高级检索
当前位置: 首页 > 详情页

基于多尺度空洞分离卷积的u-net分割前列腺图像

文献详情

资源类型:

收录情况: ◇ 北大核心

机构: [1] 昆明理工大学信息工程与自动化学院 [2] 昆明医科大学第一附属医院
出处:

摘要:
前列腺核磁共振(magnetic resonance, MR)影像切片后发现有些影像没有有效的边缘信息,这导致无法明确定位边缘位置,进而无法分割出前列腺。同时,传统的卷积网络需要参数量庞大占用模型的存储空间过多。本文提出了一种结合多尺度空洞可分离卷积和通道注意力的U-Net来分割前列腺的方法。首先,对50个3维(three-dimensional, 3D)前列腺样品进行切片并对切片后图像进行对比度增强。随后,将处理后数据输入到残差U-Net中,使用多尺度空洞卷积和通道注意力作为编码-解码单元来提取特征信息。最后,使用Dice系数和豪斯多夫距离(Housdorff distance, HD)来评估分割结果。实验在PROMISE12挑战赛数据集验证,最终Dice系数和HD分别为88.13%、14.17 mm,参数量和存储空间降低57%。结果表明,本文方法不仅可以分割出没有有效边缘的前列腺区域提高其分割精度而且能有效的降低参数量和存储空间,能够应用于模糊边缘的医学图像中。

语种:
第一作者:
第一作者机构: [1] 昆明理工大学信息工程与自动化学院
通讯作者:
推荐引用方式(GB/T 7714):

资源点击量:56916 今日访问量:0 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)