高级检索
当前位置: 首页 > 详情页

miR-26a-5p Suppresses Wnt/β-Catenin Signaling Pathway by Inhibiting DNMT3A-Mediated SFRP1 Methylation and Inhibits Cancer Stem Cell-Like Properties of NSCLC

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China. [2]Department of PCCM, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China. [3]Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
出处:
ISSN:

摘要:
Lung cancer is a malignant cancer which results in the most cancer incidence and mortality worldwide. There is increasing evidence that the pattern of DNA methylation affects tumorigenesis and progression. However, the molecules and mechanisms regulating DNA methylation remain unclear.The expression of miR-26a-5p in NSCLC cell lines was detected by qPCR and verified in NSCLC tissues from TCGA using Limma R package. CCK-8 assay, plate clone formation assay, flow cytometry, and sphere formation assay were used to detect the cell proliferation, colony formation, cell cycle, and cancer stem cell- (CSC-) like property in NSCLC cell lines. The immunoblotting was used to detect the protein levels of DNMT3A, SFRP1, and Ki67. Global DNA methylation levels and DNA methylation levels of SFRP1 promoter were examined using ELISA and MSP-PCR assay, respectively. The distribution of β-catenin was examined using immunofluorescence (IF). Besides, xenograft mouse model was used to investigate the antitumor effects of miR-26a-5p in vivo. The pathology and protein levels were, respectively, detected by hematoxylin and eosin (H&E) and immunocytochemistry (IHC).The expression of miR-26a-5p was downregulated in the tumor tissues comparted to adjacent normal tissues as well as NSCLC cell lines compared to normal lung epithelial cell (BEAS2B). The overexpression of miR-26a-5p inhibited cell proliferation, colony formation, CSC-like property, and arrested cell cycle at G1 phase. DNMT3A was a target of miR-26a-5p and upregulated DNA methylation on SFRP1 promoter. Mechanistically, miR-26a-5p repressed cell proliferation, colony formation, CSC-like property, and arrested cell cycle at G1 phase by binding DNMT3A to reduce DNA methylation levels of SFRP1 then upregulated SFRP1 expression. Moreover, miR-26a-5p exerted antitumor effects in vivo.Our results revealed that miR-26a-5p acted as a tumor suppressor through targeting DNMT3A to upregulate SFRP1 via reducing DNMT3A-dependent DNA methylation.Copyright © 2022 Jie Yu et al.

基金:
语种:
被引次数:
WOS:
PubmedID:

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版]

第一作者:
第一作者机构: [1]Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, Yunnan 650032, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)