高级检索
当前位置: 首页 > 详情页

Lysophosphatidic Acid Induced Apoptosis, DNA Damage, and Oxidative Stress in Spinal Cord Neurons by Upregulating LPA4/LPA6 Receptors

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Dept Rehabil Med, Affiliated Hosp 1, 295 Xichang Rd, Kunming 650032, Peoples R China [2]Kunming Med Univ, Dept Tradit Chinese Med, Affiliated Hosp 1, 295 Xichang Rd, Xishan Dist, Kunming 650032, Peoples R China
出处:
ISSN:

摘要:
Lysophosphatidic acid (LPA) has disruptive effects on lumbar spinal stenosis (LSS). Recently, LPA has been reported to be involved in spinal cord neuronal injury and toxicity, promoting the pathogenesis of LSS. However, the exact effects of LPA on spinal cord neurons remain unknown. The purpose of this study is to investigate the effects of LPA (18 : 1) on spinal cord neuronal cytotoxicity, apoptosis, DNA damage, and oxidative stress. After clinical detection of LPA secretion, spinal cord neurons were treated with LPA (18 : 1); cell viability was analyzed by MTT assay, and LDH leakage was detected by LDH kit; cell apoptosis was detected by flow cytometry; ROS production was measured by DCFDA staining and MitoSOX Red Staining; the activation of the G alpha 12/G alpha 13 signaling pathway was detected by serum response factor response element (SRF-RE) luciferase reporter gene; the relationship among LPA, LPA4/6, and ROCK was examined by western blotting. In spinal cord neurons treated with LPA (18 : 1), cellular activity decreased and LDH release increased. The Rho kinase inhibitor (Y-27632) can attenuate LPA-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons. Moreover mechanistic investigation indicated that LPA (18 : 1) activates G alpha 12/13-Rho-ROCK2-induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons by upregulating LPA4/LPA6 receptors. Further, the Rho kinase inhibitor Y-27632 attenuates the effects of LPA by downregulating LPA4/LPA6 receptors. Taken together, the possible mechanism by which LPA secretion in LSS patients aggravates patient injury was further elucidated using an LPA-induced spinal cord neuronal injury cell model in vitro.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 免疫学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 免疫学
JCR分区:
出版当年[2022]版:
Q2 CELL BIOLOGY Q2 IMMUNOLOGY
最新[2023]版:
Q2 CELL BIOLOGY Q2 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Dept Rehabil Med, Affiliated Hosp 1, 295 Xichang Rd, Kunming 650032, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:57186 今日访问量:0 总访问量:1788 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)