高级检索
当前位置: 首页 > 详情页

Preparation of gastrodin-modified dendrimer-entrapped gold nanoparticles as a drug delivery system for cerebral ischemia-reperfusion injury

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.
出处:
ISSN:

摘要:
This study sought to evaluate the feasibility of multifunctional gastrodin (GAS)-containing nano-drug carrier system against cerebral ischemia-reperfusion injury (CIRI).The drug-loaded nanocomposite (Au-G5.NHAc-PS/GAS) with certain encapsulation efficiency (EE) was prepared by physical adsorption method using different proportions of GAS and drug-carrying system (Au-G5.NHAc-PS). High-performance liquid chromatography was used to determine the drug loading and EE. Cultured rat astrocytes and hypothalamic neurons were assigned into four groups: PBS, Au-G5.NHAc-PS, Au-G5.NHAc-PS/GAS, and GAS. CCK-8 assay, flow cytometry, and quantitative real-time PCR were performed to examine the cell viability, apoptosis, and the expression of tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 in the astrocytes and hypothalamic neurons, respectively. Cellular uptake of GAS and Au-G5.NHAc-PS/GAS was analyzed by using Hoechst 33342 staining. The animal model with focal cerebral ischemia was generated by middle cerebral artery occlusion (MCAO) in healthy male Sprague Dawley (SD) rats, and pathological changes of brain tissue and major organs in the rats were identified by hematoxylin and eosin (HE) staining. Apoptosis in rat astrocytes and hypothalamic neurons was detected by TUNEL staining and flow cytometry.Au-G5.NHAc-PS had a spherical shape with a uniform size of 157.3 nm. Among the nanoparticles, Au-G5.NHAc-PS/GAS with an EE of 70.3% displayed the best release delay effect. Moreover, we observed that in vitro cytotoxicity and cellular uptake of Au-G5.NHAc-PS/GAS were higher than those of GAS, whereas the expression of TNF-α, IL-1β, and IL-6 was significantly downregulated in Au-G5.NHAc-PS/GAS group as compared to G5.NHAc-PS group. Notably, HE staining revealed that although Au-G5.NHAc-PS/GAS had no toxic and side effects on the main organs of rats, it alleviated the damage of brain tissue in the MCAO rats. Besides, Au-G5.NHAc/GAS markedly reduced MCAO-induced apoptosis.Au-G5.NHAc-PS showed favorable surface morphology, sustained drug release ability, no measurable toxicity, and good biocompatibility, indicating that GAS exerts anti-inflammatory and antiapoptotic effects on CIRI.© 2022 The Authors. Brain and Behavior published by Wiley Periodicals LLC.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 心理学
小类 | 4 区 行为科学 4 区 神经科学
最新[2023]版:
大类 | 3 区 心理学
小类 | 4 区 行为科学 4 区 神经科学
JCR分区:
出版当年[2022]版:
Q2 BEHAVIORAL SCIENCES Q3 NEUROSCIENCES
最新[2023]版:
Q2 BEHAVIORAL SCIENCES Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.
通讯作者:
通讯机构: [1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China. [*1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)