高级检索
当前位置: 首页 > 详情页

MicroRNA-146a-5p alleviates the pathogenesis of osteoarthritis by inhibiting SDF-1/CXCR4-induced chondrocyte autophagy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
出处:
ISSN:

关键词: Osteoarthritis MicroRNA Stromal Cell-Derived Factor 1 C-X-C Chemokine Receptor Type 4 Autophagy

摘要:
Background: SDF-1/CXCR4 signaling promotes osteoarthritis (OA) development. CXCR4 is a potential target of miR-146a-5p. This study investigated the therapeutic role and the underlying mechanism of miR-146a-5p in OA.Methods: Human primary chondrocytes C28/I2 were stimulated with SDF-1. Cell viability and LDH release were examined. Chondrocyte autophagy was assessed using Western blot analysis, ptfLC3 transfection, and trans-mission electron microscopy. MiR-146a-5p mimics were transfected into C28/I2 cells to investigate the role of miR-146a-5p in SDF-1/CXCR4-induced autophagy of chondrocytes. An SDF-1-induced rabbit OA model was established to investigate the therapeutic role of miR-146a-5p in OA. Histological staining was performed to observe the morphology of osteochondral tissue. Results: SDF-1/CXCR4 signaling promoted autophagy in C28/I2 cells, as demonstrated by increased LC3-II protein expression and autophagic flux induced by SDF-1. SDF-1 treatment significantly inhibited cell prolifer-ation while promoting necrosis and autophagosome formation in C28/I2 cells. In the presence of SDF-1, miR-146a-5p overexpression in C28/I2 cells suppressed CXCR4 mRNA expression, LC3-II and Beclin-1 protein expression, LDH release, and autophagic flux. In addition, SDF-1 increased the autophagy of chondrocytes in rabbits and promoted the development of OA. Compared with the negative control, miR-146a-5p significantly reduced the morphological abnormalities of the rabbit cartilage that were induced by SDF-1, as well as the number of LC3-II-positive cells, protein expression of LC3-II and Beclin 1, and mRNA expression of CXCR4 in osteochondral tissue. These effects were reversed by the autophagy agonist rapamycin.Conclusions: SDF-1/CXCR4 promotes OA development by enhancing chondrocyte autophagy. MicroRNA-146a-5p may alleviate OA by suppressing CXCR4 mRNA expression and SDF-1/CXCR4-induced chondrocyte autophagy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 免疫学 2 区 药学
JCR分区:
出版当年[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q2 IMMUNOLOGY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q2 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China [*1]Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, No.95 Xichang Road, Wuhua District, Kunming 650032, Yunnan, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56916 今日访问量:2 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)