高级检索
当前位置: 首页 > 详情页

Alterations in metabolome and microbiome signatures provide clues to the role of antimicrobial peptide KT2 in ulcerative colitis

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Affiliated Hosp 1, Dept Gastroenterol, Kunming, Yunnan, Peoples R China [2]Kunming Med Univ, Affiliated Hosp 1, Yunnan Prov Clin Res Ctr Digest Dis, Kunming, Yunnan, Peoples R China [3]Kunming Med Univ, Affiliated Hosp 1, Sci Res Lab Ctr, Kunming, Yunnan, Peoples R China
出处:
ISSN:

关键词: ulcerative colitis gut microbiome metabolomics biomarkers

摘要:
IntroductionUlcerative colitis (UC) is an inflammatory disease of the intestinal tract with unknown etiology. Both genetic and environmental factors are involved in the occurrence and development of UC. Understanding changes in the microbiome and metabolome of the intestinal tract is crucial for the clinical management and treatment of UC. MethodsHere, we performed metabolomic and metagenomic profiling of fecal samples from healthy control mice (HC group), DSS (Dextran Sulfate Sodium Salt) -induced UC mice (DSS group), and KT2-treated UC mice (KT2 group). Results and DiscussionIn total, 51 metabolites were identified after UC induction, enriched in phenylalanine metabolism, while 27 metabolites were identified after KT2 treatment, enriched in histidine metabolism and bile acid biosynthesis. Fecal microbiome analysis revealed significant differences in nine bacterial species associated with the course of UC, including Bacteroides, Odoribacter, and Burkholderiales, which were correlated with aggravated UC, and Anaerotruncus, Lachnospiraceae, which were correlated with alleviated UC. We also identified a disease-associated network connecting the above bacterial species with UC-associated metabolites, including palmitoyl sphingomyelin, deoxycholic acid, biliverdin, and palmitoleic acid. In conclusion, our results indicated that Anaerotruncus, Lachnospiraceae, and Mucispirillum were protective species against DSS-induced UC in mice. The fecal microbiomes and metabolomes differed significantly among the UC mice and KT2-treated and healthy-control mice, providing potential evidence for the discovery of biomarkers of UC.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 生物学
小类 | 3 区 微生物学
JCR分区:
出版当年[2023]版:
Q2 MICROBIOLOGY
最新[2023]版:
Q2 MICROBIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Affiliated Hosp 1, Dept Gastroenterol, Kunming, Yunnan, Peoples R China [2]Kunming Med Univ, Affiliated Hosp 1, Yunnan Prov Clin Res Ctr Digest Dis, Kunming, Yunnan, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Kunming Med Univ, Affiliated Hosp 1, Dept Gastroenterol, Kunming, Yunnan, Peoples R China [2]Kunming Med Univ, Affiliated Hosp 1, Yunnan Prov Clin Res Ctr Digest Dis, Kunming, Yunnan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)