高级检索
当前位置: 首页 > 详情页

AI-based fingerprint index of visceral adipose tissue for the prediction of bowel damage in patients with Crohn's disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Radiol, 58 Zhongshan II Rd, Guangzhou 510080, Peoples R China [2]Wenzhou Med Univ, Affiliated Hosp 1, Dept Radiol, Wenzhou 325000, Peoples R China [3]Shenzhen Univ, Sch Biomed Engn, Med Sch, Med AI Lab, Block A2,Lihu Campus,1066 Xueyuan Ave, Shenzhen 518000, Peoples R China [4]Shantou Univ Med Coll, Dept Radiol, Affiliated Hosp 1, 57 Changping Rd, Shantou 515041, Peoples R China [5]First Peoples Hosp Foshan, Dept Radiol, 81 Lingnan Dadao North, Foshan 528000, Peoples R China [6]Guangdong Med Univ, Dept Radiol, Jiangmen Cent Hosp, 23 Beijie Haibang St, Jiangmen 529030, Peoples R China [7]Hainan Med Univ, Dept Radiol, Hainan Gen Hosp, Hainan Affiliated Hosp, 19 Xiuhua Rd, Haikou, Hainan, Peoples R China [8]Southern Med Univ, Affiliated Dongguan Peoples Hosp, Dept Radiol, 78 Wandao Rd, Dongguan 523000, Peoples R China [9]Kunming Med Univ, Affiliated Hosp 1, Med Imaging Dept, Xi Chang Rd 295th, Kunming 650000, Yunnan, Peoples R China [10]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Gastroenterol, 58 Zhongshan II Rd, Guangzhou 510080, Peoples R China [11]Guangzhou Med Univ, Affiliated Hosp 3, Dept Radiol, 63 Duobao Rd, Guangzhou 510150, Peoples R China
出处:
ISSN:

摘要:
The fingerprint features of visceral adipose tissue (VAT) are intricately linked to bowel damage (BD) in patients with Crohn's disease (CD). We aimed to develop a VAT fingerprint index (VAT-FI) using radiomics and deep learning features extracted from computed tomography (CT) images of 1,135 CD patients across six hospitals (training cohort, n = 600; testing cohort, n = 535) for predicting BD, and to compare it with a subcutaneous adipose tissue (SAT)-FI. VAT-FI exhibited greater predictive accuracy than SAT-FI in both training (area under the receiver operating characteristic curve [AUC] = 0.822 vs. AUC = 0.745, p = 0.019) and testing (AUC = 0.791 vs. AUC = 0.687, p = 0.019) cohorts. Multivariate logistic regression analysis highlighted VAT-FI as the sole significant predictor (training cohort: hazard ratio [HR] = 1.684, p = 0.012; testing cohort: HR = 2.649, p < 0.001). Through Shapley additive explanation (SHAP) analysis, we further quantitatively elucidated the predictive relationship between VAT-FI and BD, highlighting potential connections such as Radio479 (wavelet-HLH-first-order standard deviation)-Frequency loose stools-BD severity. VAT-FI offers an accurate means for characterizing BD, minimizing the need for extensive clinical data.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Radiol, 58 Zhongshan II Rd, Guangzhou 510080, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:57189 今日访问量:0 总访问量:1788 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)