高级检索
当前位置: 首页 > 详情页

Butyric acid alleviates LPS-induced intestinal mucosal barrier damage by inhibiting the RhoA/ROCK2/MLCK signaling pathway in Caco2 cells

文献详情

资源类型:
Pubmed体系:
机构: [1]Kunming Medical University, Kunming, Yunnan, China. [2]Department of Pediatrics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China. [3]Centre for Experimental Studies and Research, the first Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China. [4]BioBank, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China. [5]Department of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
出处:

摘要:
Butyric acid (BA) can potentially enhance the function of the intestinal barrier. However, the mechanisms by which BA protects the intestinal mucosal barrier remain to be elucidated. Given that the Ras homolog gene family, member A (RhoA)/Rho-associated kinase 2 (ROCK2)/Myosin light chain kinase (MLCK) signaling pathway is crucial for maintaining the permeability of the intestinal epithelium, we further investigated whether BA exerts a protective effect on epithelial barrier function by inhibiting this pathway in LPS-induced Caco2 cells. First, we aimed to identify the optimal treatment time and concentration for BA and Lipopolysaccharide (LPS) through a CCK-8 assay. We subsequently measured Trans-epithelial electrical resistance (TEER), FITC-Dextran 4 kDa (FD-4) flux, and the mRNA expression of ZO-1, Occludin, RhoA, ROCK2, and MLCK, along their protein expression levels, and average fluorescence intensity following immunofluorescence staining. We then applied the ROCK2 inhibitor Y-27632 and reevaluated the TEER, FD-4 flux, and mRNA, and protein expression of ZO-1, Occludin, RhoA, ROCK2, and MLCK, as well as their distribution in Caco2 cells. The optimal treatment conditions were determined to be 0.2 mmol/L BA and 5 μg/mL LPS for 24 hours. Compared with LPS treatment alone, BA significantly mitigated the reduction in the TEER, decreased FD-4 flux permeability, increased the mRNA expression of ZO-1 and Occludin, and normalized the distribution of ZO-1 and Occludin in Caco2 cells. Furthermore, BA inhibited the expression of RhoA, ROCK2, and MLCK, and normalized their localization within Caco2 cells. Following treatment with Y-27632, the epithelial barrier function, along with the mRNA and protein expression and distribution of ZO-1 and Occludin were further normalized upon inhibition of the pathway. These findings contribute to a deeper understanding of the potential mechanisms through which BA attenuates LPS-induced impairment of the intestinal epithelial barrier.Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
第一作者:
第一作者机构: [1]Kunming Medical University, Kunming, Yunnan, China. [2]Department of Pediatrics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
通讯作者:
通讯机构: [1]Kunming Medical University, Kunming, Yunnan, China. [2]Department of Pediatrics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56916 今日访问量:0 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)