高级检索
当前位置: 首页 > 详情页

Artificial intelligence in polycystic ovarian syndrome management: past, present, and future

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Affiliated Hosp 1, Dept Reprod & Genet, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China [2]Shandong First Med Univ, Jinan Matern & Child Care Hosp, Dept Gynecol Endocrinol, Jinan 250001, Peoples R China [3]Kunming Med Univ, Affiliated Hosp 2, Dept Dermatol, Kunming 650101, Yunnan, Peoples R China [4]Shandong Univ, Cheeloo Coll Med, Sch Basic Med Sci, Key Lab Expt Teratol,Minist Educ, Jinan 250012, Shandong, Peoples R China [5]Shandong Univ, Cheeloo Coll Med, Ctr Expt Nucl Med, Sch Basic Med Sci, Jinan 250012, Shandong, Peoples R China [6]Fudan Univ, Zhongshan Hosp, Dept Nucl Med, Shanghai 200032, Peoples R China [7]Univ South China, Clin Anat & Reproduet Medieine Applicat Inst, Hengyang Medieal Sehool, Hengyang, Peoples R China [8]Cent South Univ, Xiangya Hosp 3, Dept Plast & Reconstruct Surg, Changsha 410013, Hunan, Peoples R China
出处:
ISSN:

关键词: Artificial intelligence Polycystic ovary syndrome Digital healthcare

摘要:
BackgroundIntegrating artificial intelligence (AI) prospected in the practical clinical management of polycystic ovary syndrome (PCOS) promised significant improvement in efficiency, interpretability, and generalizability.PurposeTo delineate a comprehensive inventory of AI-driven interventions pertinent to PCOS across diverse clinical contexts.Evidence reviewsAI-based analytics profoundly transformed the management of PCOS, particularly in the domains of prediction, diagnosis, classification, and screening of potential complications.ResultsOur analysis traced the principal applications of AI in PCOS management, focusing on prediction, diagnosis, classification, and screening. Furthermore, this study ventures into the potential of amalgamating and augmenting existing digital health technologies to forge an AI-augmented digital healthcare ecosystem encompassing the prevention and holistic management of PCOS. We also discuss strategic avenues that may facilitate the clinical translation of these innovative systems.ConclusionThis systematic review consolidated the latest advancements in AI-driven PCOS management encompassing prediction, diagnosis, classification, and screening of potential complications, developing a digital healthcare framework tailored to the practical clinical management of PCOS.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2025]版:
最新[2024]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Affiliated Hosp 1, Dept Reprod & Genet, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:70829 今日访问量:0 总访问量:2273 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司