高级检索
当前位置: 首页 > 详情页

Kynu inhibition mitigates bile duct ischemic injury by rewiring tryptophan metabolism to restore tight junction integrity

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
出处:
ISSN:

关键词: Bile duct barrier Ischemic injury Tight junction Kynu Tryptophan metabolism

摘要:
Disruption in bile duct barrier function contributes to hepatocyte toxicity in ischemia-reperfusion injury, often leading to surgical complications in liver resection, transplantation, and hemorrhagic shock. However, the underlying mechanisms remain incompletely understood.Transcriptomic and proteomic analyses were conducted to examine tryptophan (Trp) metabolism in a Pringle maneuver-induced bile duct injury rat model; Hypoxia/Reoxygenation (H/R) was used to establish an in vitro cholangiocyte injury model. Cholangiocyte injury was assessed via hematoxylin and eosin (H&E) staining, Ki67/myeloperoxidase (MPO) immunohistochemistry, transmission electron microscopy (TEM), and TUNEL/CK19 co-staining. Tight junction integrity was evaluated by measuring transepithelial electrical resistance (TEER), inulin permeability, and confocal immunofluorescence (IF) for ZO-1/CK19 co-staining. Gene expression was quantified using RT-qPCR and Western blotting, while metabolites were analyzed via liquid chromatography-tandem mass spectrometry (LC-MS/MS).Significant alterations in Trp metabolism-related genes (Kynu, Haao, Kat1/Kat2) and metabolites were observed. Continuous Pringle maneuver resulted in elevated levels of 3-hydroxyanthranilic acid (3-HAA) and quinolinic acid (QA), a decreased xanthurenic acid (XA) level. In vitro, Kynu inhibition, using shRNA or the inhibitor benserazide (BSZ), ameliorated tight junction impairment and attenuated inflammatory damage in hypoxic biliary epithelial cells. In vivo, post-ischemia Kynu blockade reduced bile duct damage, inflammation, and biliary barrier permeability. Proteome analysis revealed that Kynu inhibition decreased 3-HAA, AA and QA levels while increased XA level. Notably, XA (but not AA or QA) treatment restored cell junction integrity under hypoxic conditions and modulated cytokine expression, potentially via ZO1 regulation through the GluR2/CX50 pathway. By day 7, BSZ or XA administration reduced serum bilirubin levels and mitigated of bile duct hyperplasia.Our findings demonstrated that Kynu inhibition alleviates bile duct ischemic injury by reprogramming dysregulated tryptophan metabolism, particularly through XA upregulation. This modulation may restore tight junction function via the GluR2/3/CX50-ZO1 axis, thereby preserving blood-biliary barrier integrity. Targeting Kynu represents a promising therapeutic strategy for ischemia-induced bile duct injury.© 2025. The Author(s).

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 生化与分子生物学 2 区 细胞生物学 2 区 医学:研究与实验
JCR分区:
出版当年[2025]版:
最新[2024]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 CELL BIOLOGY Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:70829 今日访问量:0 总访问量:2273 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司