高级检索
当前位置: 首页 > 详情页

Construction of a mild cognitive impairment prediction model for Parkinson's disease patients on the basis of multimodal data

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Affiliated Hosp 1, Dept Neurol, Kunming, Yunnan, Peoples R China [2]Dali Bai Autonomous Prefecture Peoples Hosp, Dept Neurol, Dali, Yunnan, Peoples R China
出处:
ISSN:

摘要:
This research aimed to establish a model predicting mild cognitive impairment in Parkinson's disease patients (PDMCI) by integrating multimodal indicators. We prospectively collected general demographic data, clinical scales, gait parameters, eye tracking parameters, and neuroimaging parameters from 50 PDMCI patients, 50 Parkinson's disease patients with normal cognition (PDNCs), and 20 healthy controls (HCs). Support Vector Machine (SVM) classifiers and nested cross-validation were used to evaluate 31 feature combinations. Results demonstrated that the combination of clinical, gait, eye tracking, Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS), and Global Functional Connectivity Density (gFCD) features achieved an average accuracy of 0.9135 and an average area under the curve of 0.9602 on the test dataset. Notably, the combination of eye tracking and gait features also showed superior performance. These findings indicate that multimodal data integrated with machine learning (ML) can effectively distinguish between PDMCI and PDNC patients.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 神经科学
JCR分区:
出版当年[2025]版:
最新[2024]版:
Q1 NEUROSCIENCES

影响因子: 最新[2024版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Affiliated Hosp 1, Dept Neurol, Kunming, Yunnan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:70796 今日访问量:0 总访问量:2273 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司