机构:[1]Sichuan Univ, West China Med Sch, West China Hosp, Dept Otorhinolaryngol, 37 Guo Xue Alley, Chengdu 610041, Sichuan, Peoples R China四川大学华西医院[2]Princess Margaret Canc Ctr, Med Oncol & Med Biophys, Toronto, ON, Canada[3]Sichuan Univ, Coll Elect Engn & Informat Technol, Dept Automat, Chengdu, Peoples R China[4]Univ Med Ctr Groningen, Dept Radiat Oncol, Groningen, Netherlands[5]Shanghai Univ Finance & Econ, Sch Stat & Management, Dept Econ Stat, Shanghai, Peoples R China[6]Sichuan Univ, West China Sch Preclin & Forens Med, Dept Forens, Chengdu, Peoples R China[7]Sichuan Univ, West China Sch Preclin & Forens Med, Dept Preclin Med, Chengdu, Peoples R China[8]Princess Margaret Canc Ctr, Dept Biostat, Toronto, ON, Canada[9]Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China[10]Kunming City Women & Children Hosp, Dept Otorhinolaryngol, Kunming, Yunnan, Peoples R China[11]Kunming Med Univ, Affiliated Hosp 2, Dept Otorhinolaryngol, Kunming, Yunnan, Peoples R China[12]Kunming Med Univ, Affiliated Childrens Hosp, Dept Otorhinolaryngol, Kunming, Yunnan, Peoples R China[13]Univ Toronto, Dalla Lana Sch Publ Hlth, Med & Epidemiol, Toronto, ON, Canada[14]Kunming Med Univ, Affiliated Hosp 1, Dept Otolaryngol & Head Neck Surg, Kunming, Yunnan, Peoples R China昆明医科大学附属第一医院耳鼻喉二科(头颈外科)
Objectives/Hypothesis To develop a deep-learning-based computer-aided diagnosis system for distinguishing laryngeal neoplasms (benign, precancerous lesions, and cancer) and improve the clinician-based accuracy of diagnostic assessments of laryngoscopy findings. Study Design Retrospective study. Methods A total of 24,667 laryngoscopy images (normal, vocal nodule, polyps, leukoplakia and malignancy) were collected to develop and test a convolutional neural network (CNN)-based classifier. A comparison between the proposed CNN-based classifier and the clinical visual assessments (CVAs) by 12 otolaryngologists was conducted. Results In the independent testing dataset, an overall accuracy of 96.24% was achieved; for leukoplakia, benign, malignancy, normal, and vocal nodule, the sensitivity and specificity were 92.8% vs. 98.9%, 97% vs. 99.7%, 89% vs. 99.3%, 99.0% vs. 99.4%, and 97.2% vs. 99.1%, respectively. Furthermore, when compared with CVAs on the randomly selected test dataset, the CNN-based classifier outperformed physicians for most laryngeal conditions, with striking improvements in the ability to distinguish nodules (98% vs. 45%, P < .001), polyps (91% vs. 86%, P < .001), leukoplakia (91% vs. 65%, P < .001), and malignancy (90% vs. 54%, P < .001). Conclusions The CNN-based classifier can provide a valuable reference for the diagnosis of laryngeal neoplasms during laryngoscopy, especially for distinguishing benign, precancerous, and cancer lesions. Level of Evidence NA Laryngoscope, 2020
基金:
Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [2012017yjsy118]; Key Research and Development Support Programs of Chengdu Science and Technology Bureau [2018-YFYF-00123-SN]
语种:
外文
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类|3 区医学
小类|2 区耳鼻喉科学4 区医学:研究与实验
最新[2023]版:
大类|3 区医学
小类|2 区耳鼻喉科学3 区医学:研究与实验
JCR分区:
出版当年[2020]版:
Q1OTORHINOLARYNGOLOGYQ3MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1OTORHINOLARYNGOLOGYQ3MEDICINE, RESEARCH & EXPERIMENTAL
第一作者机构:[1]Sichuan Univ, West China Med Sch, West China Hosp, Dept Otorhinolaryngol, 37 Guo Xue Alley, Chengdu 610041, Sichuan, Peoples R China[2]Princess Margaret Canc Ctr, Med Oncol & Med Biophys, Toronto, ON, Canada
通讯作者:
通讯机构:[1]Sichuan Univ, West China Med Sch, West China Hosp, Dept Otorhinolaryngol, 37 Guo Xue Alley, Chengdu 610041, Sichuan, Peoples R China
推荐引用方式(GB/T 7714):
Ren Jianjun,Jing Xueping,Wang Jing,et al.Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique[J].LARYNGOSCOPE.2020,130(11):E686-E693.doi:10.1002/lary.28539.
APA:
Ren, Jianjun,Jing, Xueping,Wang, Jing,Ren, Xue,Xu, Yang...&Zhao, Yu.(2020).Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique.LARYNGOSCOPE,130,(11)
MLA:
Ren, Jianjun,et al."Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique".LARYNGOSCOPE 130..11(2020):E686-E693