高级检索
当前位置: 首页 > 详情页

Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Sichuan Univ, West China Med Sch, West China Hosp, Dept Otorhinolaryngol, 37 Guo Xue Alley, Chengdu 610041, Sichuan, Peoples R China [2]Princess Margaret Canc Ctr, Med Oncol & Med Biophys, Toronto, ON, Canada [3]Sichuan Univ, Coll Elect Engn & Informat Technol, Dept Automat, Chengdu, Peoples R China [4]Univ Med Ctr Groningen, Dept Radiat Oncol, Groningen, Netherlands [5]Shanghai Univ Finance & Econ, Sch Stat & Management, Dept Econ Stat, Shanghai, Peoples R China [6]Sichuan Univ, West China Sch Preclin & Forens Med, Dept Forens, Chengdu, Peoples R China [7]Sichuan Univ, West China Sch Preclin & Forens Med, Dept Preclin Med, Chengdu, Peoples R China [8]Princess Margaret Canc Ctr, Dept Biostat, Toronto, ON, Canada [9]Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China [10]Kunming City Women & Children Hosp, Dept Otorhinolaryngol, Kunming, Yunnan, Peoples R China [11]Kunming Med Univ, Affiliated Hosp 2, Dept Otorhinolaryngol, Kunming, Yunnan, Peoples R China [12]Kunming Med Univ, Affiliated Childrens Hosp, Dept Otorhinolaryngol, Kunming, Yunnan, Peoples R China [13]Univ Toronto, Dalla Lana Sch Publ Hlth, Med & Epidemiol, Toronto, ON, Canada [14]Kunming Med Univ, Affiliated Hosp 1, Dept Otolaryngol & Head Neck Surg, Kunming, Yunnan, Peoples R China
出处:
ISSN:

关键词: Deep learning laryngoscopic image artificial intelligence convolutional neural networks clinical visual assessment

摘要:
Objectives/Hypothesis To develop a deep-learning-based computer-aided diagnosis system for distinguishing laryngeal neoplasms (benign, precancerous lesions, and cancer) and improve the clinician-based accuracy of diagnostic assessments of laryngoscopy findings. Study Design Retrospective study. Methods A total of 24,667 laryngoscopy images (normal, vocal nodule, polyps, leukoplakia and malignancy) were collected to develop and test a convolutional neural network (CNN)-based classifier. A comparison between the proposed CNN-based classifier and the clinical visual assessments (CVAs) by 12 otolaryngologists was conducted. Results In the independent testing dataset, an overall accuracy of 96.24% was achieved; for leukoplakia, benign, malignancy, normal, and vocal nodule, the sensitivity and specificity were 92.8% vs. 98.9%, 97% vs. 99.7%, 89% vs. 99.3%, 99.0% vs. 99.4%, and 97.2% vs. 99.1%, respectively. Furthermore, when compared with CVAs on the randomly selected test dataset, the CNN-based classifier outperformed physicians for most laryngeal conditions, with striking improvements in the ability to distinguish nodules (98% vs. 45%, P < .001), polyps (91% vs. 86%, P < .001), leukoplakia (91% vs. 65%, P < .001), and malignancy (90% vs. 54%, P < .001). Conclusions The CNN-based classifier can provide a valuable reference for the diagnosis of laryngeal neoplasms during laryngoscopy, especially for distinguishing benign, precancerous, and cancer lesions. Level of Evidence NA Laryngoscope, 2020

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 2 区 耳鼻喉科学 4 区 医学:研究与实验
最新[2023]版:
大类 | 3 区 医学
小类 | 2 区 耳鼻喉科学 3 区 医学:研究与实验
JCR分区:
出版当年[2020]版:
Q1 OTORHINOLARYNGOLOGY Q3 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 OTORHINOLARYNGOLOGY Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Sichuan Univ, West China Med Sch, West China Hosp, Dept Otorhinolaryngol, 37 Guo Xue Alley, Chengdu 610041, Sichuan, Peoples R China [2]Princess Margaret Canc Ctr, Med Oncol & Med Biophys, Toronto, ON, Canada
通讯作者:
通讯机构: [1]Sichuan Univ, West China Med Sch, West China Hosp, Dept Otorhinolaryngol, 37 Guo Xue Alley, Chengdu 610041, Sichuan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56919 今日访问量:0 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)