高级检索
当前位置: 首页 > 详情页

Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032 [2]Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
出处:
ISSN:

关键词: ferulic acid neuroprotective effect ischemia/reperfusion oxidation apoptosis

摘要:
Ferulic acid (FA) is a derivative of cinnamic acid. It is used in the treatment of heart head blood-vessel disease and exerts protective effects against hypoxia/ischemia-induced cell injury in the brain. This study investigated the potential neuroprotective effects of FA against ischemia/reperfusion (I/R)-induced brain injury in vivo and in vitro through hematoxylin and eosin (H&E) and Nissl staining assays, flow cytometry, Hoechst 33258 staining, quantitative PCR, western blot analysis and fluorescence microscopic analysis. In this study, models of cerebral I/R injury were established using rats and pheochromocytoma (PC-12) cells. The results revealed that treatment with FA significantly attenuated memory impairment, and reduced hippocampal neuronal apoptosis and oxidative stress in a dose-dependent manner. The results from in vitro experiments also indicated that FA protected the PC-12 cells against I/R-induced reactive oxygen species (ROS) generation and apoptosis by inhibiting apoptosis, Ca2+ influx, superoxide anion (O-2(-)), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) production in a concentration-dependent manner. Moreover, FA inactivated the Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88) pathway. MyD88 overexpression abolished the neuroprotective effects of FA. On the whole, we found that FA attenuated memory dysfunction and exerted protective effects against oxidative stress and apoptosis induced by I/R injury by inhibiting the TLR4/MyD88 signaling pathway. This study supports the view that FA may be a promising neuroprotective agent for use in the treatment of cerebral ischemia.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 医学
小类 | 4 区 医学:研究与实验
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 医学:研究与实验
JCR分区:
出版当年[2017]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032
通讯作者:
通讯机构: [*1]Biomedical Engineering Center, Kunming Medical University, 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, P.R. China [*2]Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, Yunnan 650032, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56916 今日访问量:2 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)