高级检索
当前位置: 首页 > 详情页

A novel tissue-engineered bone in repairing femoral head defect and necrosis

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Guiyang Med Coll Hosp, Dept Emergency Surg, Guiyang 550004, Peoples R China; [2]Kunming Med Coll, Affiliated Hosp 1, Kunming 650032, Peoples R China; [3]Fourth Mil Med Univ, Xijing Hosp, Dept Orthopaed, Xian 710032, Peoples R China; [4]Guiyang Med Coll Hosp, Dept Emergency Surg, Guiyi St, Guiyang 550004, Peoples R China
出处:
ISSN:

关键词: Avascular necrosis of femoral head basic fibroblast growth factor bone morphogenetic protein allogeneic antigen-extracted cancellous bone

摘要:
Objective: To evaluate the therapeutic effects of AACB/BMP/bFGF, a novel tissue-engineered bone, in repairing femoral head defect and necrosis in dog models. Methods: Dog models of avascular necrosis of femoral head (ANFH) were established by liquid nitrogen freezing method. Group A was untreated; Groups B, C, and D were implanted with AACB, AACB/BMP, and AACB/BMP/bFGF complex, respectively; Group E was grafted with autologous cancellous bone. Samples were collected at 3 w, 6 w, and 12 w after operation. A series of examinations were carried out to investigate the effects of the materials in repairing femoral head defect, including anatomical observation, X-ray examination, histological analysis, and vascular immunohistochemical staining. Results: Our results indicated that, compared with AACB alone and AACB/BMP, AACB/BMP/bFGF complex could exert the most efficient therapeutic effects in dog ANFH models. X-ray examination further confirmed that AACB/BMP/bFGF complex could effectively repair the injuries in dog ANFH models, almost to a comparable level with cancellous bone autografts. Moreover, histological analysis indicated that AACB/BMP/bFGF complex greatly enhanced the new bone formation, which would contribute to the healing of ANFH. Furthermore, vascular immunohistochemical staining revealed that AACB/BMP/bFGF complex could significantly stimulate the revascularization in defect areas, reflecting the post-injury healing process in these models. Conclusion: AACB/BMP/bFGF complex has great potential in repairing femoral head defect by enhancing osteogenesis and revascularization. The novel tissue-engineered bone would be widely used in clinical applications for ANFH treatment, especially as an alternative for autografts.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2023]版:
JCR分区:
出版当年[2015]版:
Q4 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q4 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Guiyang Med Coll Hosp, Dept Emergency Surg, Guiyang 550004, Peoples R China;
通讯作者:
通讯机构: [4]Guiyang Med Coll Hosp, Dept Emergency Surg, Guiyi St, Guiyang 550004, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)