高级检索
当前位置: 首页 > 详情页

G6PD facilitates clear cell renal cell carcinoma invasion by enhancing MMP2 expression through ROS-MAPK axis pathway(Open Access)

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [a]Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, 650500, China [b]Department of Pathology, First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, 650032, China [c]Department of Clinical Laboratory, Second Hospital of Jingzhou, Jingzhou, Hubei, 434000, China [d]Department of Medical Oncology, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Yunnan, Kunming, 650118, China [e]Department of Pathology, Second Affiliated Hospital of Kunming Medical University, Yunnan, Kunming, 650101, China [f]Department of Organ Transplantation, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua, Yunnan, Kunming, 650032, China
出处:
ISSN:

关键词: Clear cell renal cell carcinoma Glucose-6-phosphate dehydrogenase Invasion MAPK Matrix metalloproteinase 2 Reactive oxygen species

摘要:
Glucose-6-phosphate dehydrogenase (G6PD) is crucial rate-limiting enzyme of the pentose phosphate pathway (PPP). G6PD dysregulation has been reported in various types of human cancer, and the role of G6PD in cancer progression was demonstrated in numerous studies. A previous study from our laboratory described the prognostic significance of G6PD in clear cell renal cell carcinoma (ccRCC), and demonstrated its proliferative role through positive feedback regulation of the phosphorylated form of signal transducer and activator of transcription 3. However, the role of G6PD in ccRCC invasion remains unclear. In the present study, reverse transcription-quantitative (RT-q) PCR, western blotting, enzyme activity assay, transwell assay and immunohistochemistry analysis in cell model, xenograft mice model and human specimen studies were performed to evaluate the role of G6PD in ccRCC invasion. The results from the present study demonstrated that G6PD may promote ccRCC cell invasive ability by increasing matrix metalloproteinase 2 (MMP2) mRNA and protein expression both in vitro and in vivo. In addition, a positive correlation between G6PD and MMP2 expression was demonstrated by RT-qPCR and western blotting in twenty pairs of ccRCC tumor specimens and matched adjacent normal tissues. Furthermore, G6PD promoted reactive oxygen species (ROS) generation and activated the MAPK signaling pathway in ccRCC cells. In addition, ROS significantly promoted the MAPK signaling pathway activation, which in turn contributed to MMP2 overexpression in ccRCC cells. In conclusion, the present study demonstrated that G6PD may facilitate ccRCC cell invasive ability by enhancing MMP2 expression through ROS-MAPK axis pathway. © 2020 Spandidos Publications. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 3 区 肿瘤学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2020]版:
Q2 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [a]Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming, 650500, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)