高级检索
当前位置: 首页 > 详情页

Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou, Peoples R China [2]Chinese Acad Sci, Shenzhen Inst Adv Technol, ShenZhen Key Lab Comp Vis & Pattern Recognit, Shenzhen, Peoples R China [3]Kunming Med Univ, Dept Ophthalmol, Affiliated Hosp 1, Kunming, Yunnan, Peoples R China [4]First Hosp Shijiazhuang City, Shijiazhuang, Hebei, Peoples R China [5]Handan City Eye Hosp, Handan, Peoples R China [6]Chinese Univ Hong Kong Shenzhen, C MER Shenzhen Dennis Lam Eye Hosp, Int Eye Res Inst, Shenzhen, Peoples R China [7]WMU, Hosp Eye, Hangzhou, Peoples R China [8]Second Hosp Jilin Univ, Dept Ophthalmol, Changchun, Peoples R China [9]SenseTime Grp Ltd, Hong Kong, Peoples R China [10]Guizhou Med Univ, Dept Ophthalmol, Affiliated Hosp 2, Kaili, Peoples R China [11]Xi An Jiao Tong Univ, Dept Ophthalmol, Affiliated Hosp 2, Xian, Peoples R China [12]Nanchang Univ, Department Ophthalmol, Affiliated Hosp 3, Nanchang, Jiangxi, Peoples R China [13]Univ Calif San Diego, Shiley Eye Inst, Viterbi Family Dept Ophthalmol, Hamilton Glaucoma Ctr, La Jolla, CA USA [14]Univ Leeds, CISTIB Ctr Computat Imaging & Simulat Technol Bio, Sch Comp, Leeds, W Yorkshire, England [15]Univ Leeds, CISTIB Ctr Computat Imaging & Simulat Technol Bio, Sch Med, Leeds, W Yorkshire, England [16]Singapore Eye Res Inst, Singapore, Singapore [17]Singapore Natl Eye Ctr, Singapore, Singapore
出处:
ISSN:

摘要:
By 2040, similar to 100 million people will have glaucoma. To date, there are a lack of high-efficiency glaucoma diagnostic tools based on visual fields (VFs). Herein, we develop and evaluate the performance of 'iGlaucoma', a smartphone application-based deep learning system (DLS) in detecting glaucomatous VF changes. A total of 1,614,808 data points of 10,784 VFs (5542 patients) from seven centers in China were included in this study, divided over two phases. In Phase I, 1,581,060 data points from 10,135 VFs of 5105 patients were included to train (8424 VFs), validate (598 VFs) and test (3 independent test sets-200, 406, 507 samples) the diagnostic performance of the DLS. In Phase II, using the same DLS, iGlaucoma cloud-based application further tested on 33,748 data points from 649 VFs of 437 patients from three glaucoma clinics. With reference to three experienced expert glaucomatologists, the diagnostic performance (area under curve [AUC], sensitivity and specificity) of the DLS and six ophthalmologists were evaluated in detecting glaucoma. In Phase I, the DLS outperformed all six ophthalmologists in the three test sets (AUC of 0.834-0.877, with a sensitivity of 0.831-0.922 and a specificity of 0.676-0.709). In Phase II, iGlaucoma had 0.99 accuracy in recognizing different patterns in pattern deviation probability plots region, with corresponding AUC, sensitivity and specificity of 0.966 (0.953-0.979), 0.954 (0.930-0.977), and 0.873 (0.838-0.908), respectively. The 'iGlaucoma' is a clinically effective glaucoma diagnostic tool to detect glaucoma from humphrey VFs, although the target population will need to be carefully identified with glaucoma expertise input.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 医学
小类 | 1 区 卫生保健与服务 1 区 医学:信息
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 卫生保健与服务 1 区 医学:信息
JCR分区:
出版当年[2020]版:
Q1 MEDICAL INFORMATICS Q1 HEALTH CARE SCIENCES & SERVICES
最新[2023]版:
Q1 HEALTH CARE SCIENCES & SERVICES Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou, Peoples R China [2]Chinese Acad Sci, Shenzhen Inst Adv Technol, ShenZhen Key Lab Comp Vis & Pattern Recognit, Shenzhen, Peoples R China [4]First Hosp Shijiazhuang City, Shijiazhuang, Hebei, Peoples R China [16]Singapore Eye Res Inst, Singapore, Singapore [17]Singapore Natl Eye Ctr, Singapore, Singapore
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:57186 今日访问量:0 总访问量:1788 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)