高级检索
当前位置: 首页 > 详情页

Hypoxia maintains the fenestration of liver sinusoidal endothelial cells and promotes their proliferation through the SENP1/HIF-1α/VEGF signaling axis

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
出处:
ISSN:

关键词: HIF-1α Hypoxia Liver sinusoidal endothelial cells Sentrin/SUMO-Specific protease 1 VEGF

摘要:
Liver sinusoidal endothelial cells (LSECs), which play a very critical role in liver regeneration, function in hypoxic environments, but few studies have elucidated the specific mechanism. As a hypoxia-sensitive gene, Sentrin/SUMO-specific protease 1(SENP1) is upregulated in solid tumors due to hypoxia and promotes tumor proliferation. We speculate that LSECs may upregulate SENP1 in hypoxic environments and that SENP1 may act on downstream genes to allow the cells to adapt to the hypoxic environment. To elucidate the reasons for the survival of LSECs under hypoxia, we designed experiments to explore the possible mechanism. First, we cultured murine LSECs in hypoxic conditions for a certain time (24 h and 72 h), and then, we observed that the proliferation ability of the hypoxia group was higher than that of the normoxia group, and the number of unique fenestrae of the LSECs in the hypoxia group was more than that of the LSECs in the normoxia group. Then, we divided the LSECs into several groups for hypoxic culture for time points (6 h, 12 h, 24 h, 36 h, and 72 h), and we found that the expression of SENP1, HIF-1α and VEGF was significantly upregulated. Then, we silenced SENP1 and HIF-1α with si-SENP1 and si–HIF–1α, respectively. SENP1, HIF-1α and VEGF were significantly downregulated, as determined by RT-PCR, WB and ELISA. Unexpectedly, the proliferation activity of the LSECs decreased and the fenestrae disappeared more in the si-SENP1 and si–HIF–1α groups than in the control group. It is concluded that LSECs cultured under hypoxic conditions may maintain fenestrae and promote proliferation through the SENP1/HIF-1α/VEGF signaling axis, thereby adapting to the hypoxic environment. © 2021 Elsevier Inc.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学 4 区 生物物理
最新[2023]版:
大类 | 3 区 生物学
小类 | 3 区 生物物理 4 区 生化与分子生物学
JCR分区:
出版当年[2021]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 BIOPHYSICS
最新[2023]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 BIOPHYSICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
通讯作者:
通讯机构: [1]Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)