高级检索
当前位置: 首页 > 详情页

cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke.

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, PR China [2]Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, PR China [3]Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, PR China [4]Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan Province, 650032, PR China
出处:
ISSN:

关键词: Cerebral ischemic stroke cGAS-STING pathway Microglial M1/M2 polarization Neuroinflammation

摘要:
Inflammation plays a pivotal role in promoting the pathophysiology of ischemic stroke (IS). Microglia is the major immunocompetent cells involved in different neuropathologies. The activation of cyclic GMP-AMP synthase (cGAS) and its downstream signaling protein-stimulator of interferon genes (STING) is increasingly recognized as a crucial determinant of neuropathophysiology. However, the mechanisms underlying cGAS-STING signaling regulating inflammatory response during IS remains to be elucidated. In this study, HT22 cells was used to establish an oxygen-glucose deprivation (OGD) cell model in vitro, and then this cell culture supernatant containing OGD-induced DAMPs (OIDs) was employed to stimulate BV2 microglia. Furthermore, a middle cerebral artery occlusion (MCAO) mouse model was established. Cells and MCAO mice were treated with si-cGAS or si-NC lentivirus. The expression levels of STING, cGAS and p-IRF3 in BV2 cells or MCAO mouse brain; the microglial M1/M2 polarization of BV2 microglia or isolated microglial cells from MCAO mouse brain; the contents of iNOS, TNF-α, TGF-β and IL-10 in the culture medium of BV2 cells or in murine brain homogenates, were all detected. In addition, the severity of cerebral infarction with or without the knockdown of cGAS in a MCAO mouse model was also determined by TTC staining. Results showed that OGD-induced DAMPs strongly activated cGAS-STING pathway and triggered microglia polarization in BV2 cells, reflecting as the accumulation of a plethora of pro-inflammatory factors in activated microglia. However, these effects could be inhibited by cGAS knockdown. In the MCAO mouse model, the inhibition of cGAS-STING pathway resulted from cGAS knockdown could effectively diminish cell apoptosis in mouse brain stimulated by MIDs (MCAO-induced DAMPs), reduced the area ratio of cerebral infarction and ultimately improved the injured nerve function during IS. Taken together, our elucidation of underlying mechanisms involved in the microglial inflammatory response, triggered by cGAS-STING signaling, highlights this pathway as a potential therapeutic target in IS. Copyright © 2021. Published by Elsevier Inc.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2021]版:
Q3 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, PR China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56916 今日访问量:2 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)