高级检索
当前位置: 首页 > 详情页

Potential Therapeutic Effects of Policosanol from Insect Wax on Caenorhabditis elegans Models of Parkinson's Disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming 650224, Yunnan Province, China [2]Health Management Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
出处:
ISSN:

关键词: Parkinson's disease Policosanol from insect wax α-synuclein 6-OHDA Caenorhabditis elegans

摘要:
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. The standard treatments for PD focus on symptom relief rather than attempting to address the underlying degenerative processes completely. This study aimed to evaluate the potential therapeutic effects of policosanol derived from insect wax (PIW) by investigating improvements in disease symptoms represented in Caenorhabditis elegans models of PD. For our assessments, we used the following three models: NL5901, which is a transgenic model for α-synuclein aggregation; wild-type N2 induced with 6-hydroxydopamine (6-OHDA); and 6-OHDA-induced BZ555 as a model for loss of dopaminergic neurons (DNs). Specifically, we examined the effects of PIW treatment on α-synuclein aggregation, the loss of DNs, lipid abundance, and the lifespan of treated organisms. Further, we examined treatment-related changes in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), adenosine triphosphate (ATP), glutathione S-transferase (GST), and superoxide dismutase (SOD), as well as the mRNA production profiles of relevant genes. A 10 µg/mL dose of PIW reduced the aggregation of α-synuclein in NL5901 and suppressed the loss of DNs in 6-OHDA-induced BZ555. Overall, PIW treatment decreased ROS and MDA levels, restored lipid abundance, and prolonged the lifespans of worms in all the three models, which may be associated with changes in the expression profiles of genes related to cell survival and oxidative stress response pathways. Our findings show that PIW alleviated the symptoms of PD in these models, possibly by regulating the stress responses initiated by injuries such as α-synuclein aggregation or 6-OHDA treatment.© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学 3 区 药学
JCR分区:
出版当年[2023]版:
Q1 NEUROSCIENCES Q1 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 NEUROSCIENCES Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Panlong District, Kunming 650224, Yunnan Province, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:57186 今日访问量:0 总访问量:1788 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)