高级检索
当前位置: 首页 > 详情页

Identification of key potassium channel genes of temporal lobe epilepsy by bioinformatics analyses and experimental verification

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China. [2]Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China. [3]Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
出处:
ISSN:

关键词: temporal lobe epilepsy WGCNA potassium channel genes target drugs bioinformatics analyses

摘要:
One of the most prevalent types of epilepsy is temporal lobe epilepsy (TLE), which has unknown etiological factors and drug resistance. The detailed mechanisms underlying potassium channels in human TLE have not yet been elucidated. Hence, this study aimed to mine potassium channel genes linked to TLE using a bioinformatic approach. The results found that Four key TLE-related potassium channel genes (TERKPCGs) were identified: potassium voltage-gated channel subfamily E member (KCNA) 1, KCNA2, potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11), and KCNS1. A protein-protein interaction (PPI) network was constructed to analyze the relationship between TERKPCGs and other key module genes. The results of gene set enrichment analysis (GSEA) for a single gene indicated that the four TERKPCGs were highly linked to the cation channel, potassium channel, respiratory chain, and oxidative phosphorylation. The mRNA-TF network was established using four mRNAs and 113 predicted transcription factors. A ceRNA network containing seven miRNAs, two mRNAs, and 244 lncRNAs was constructed based on the TERKPCGs. Three common small-molecule drugs (enflurane, promethazine, and miconazole) target KCNA1, KCNA2, and KCNS1. Ten small-molecule drugs (glimepiride, diazoxide, levosimendan, and thiamylal et al.) were retrieved for KCNJ11. Compared to normal mice, the expression of KCNA1, KCNA2, KCNJ11, and KCNS1 was downregulated in the brain tissue of the epilepsy mouse model at both the transcriptional and translational levels, which was consistent with the trend of human data from the public database. The results indicated that key potassium channel genes linked to TLE were identified based on bioinformatics analysis to investigate the potential significance of potassium channel genes in the development and treatment of TLE.Copyright © 2023 Zhang, Chen, Zhao, Duan, Zhong and Liu.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 临床神经病学 3 区 神经科学
JCR分区:
出版当年[2023]版:
Q2 CLINICAL NEUROLOGY Q3 NEUROSCIENCES
最新[2023]版:
Q2 CLINICAL NEUROLOGY Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China. [2]Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China. [2]Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56743 今日访问量:0 总访问量:1765 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)