高级检索
当前位置: 首页 > 详情页

A frog peptide provides new strategies for the intervention against skin wound healing

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China [2]Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Afairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, Yunnan, China [3]Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China [4]Department of Dermatology, First Afliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China [5]Department of Orthopedics, 920th Hospital of Joint Logistics Support Force of PLA, Kunming 650032, Yunnan, China
出处:
ISSN:

关键词: Pro-healing peptide Amphibians Skin wounds TLR4/MAPK Infammation miR-632/Wnt/β-catenin

摘要:
Amphibian derived pro-healing peptides as molecular probes might provide a promising strategy for development of drug candidates and elucidation of cellular and molecular mechanisms of skin wound healing. A novel skin amphibian peptide, OA-RD17, was tested for modulation of cellular and molecular mechanisms associated with skin wound healing.Cell scratch, cell proliferation, trans-well, and colony formation assays were used to explore the pro-healing ability of peptide OA-RD17 and microRNA-632 (miR-632). Then, the therapeutic effects of OA-RD17 and miR-632 were assessed in mice, diabetic patient ex vivo skin wounds and SD rats. Moreover, hematoxylin and eosin (H&E), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence staining were performed to detect skin wound tissue regeneration, inflammatory factors expression, and macrophage polarization. Finally, RNA sequencing, molecular docking, co-localization, dual luciferase reporter, real-time quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to explore the mechanism of OA-RD17 and miR-632 on facilitating skin wound healing.The non-toxic peptide (OA-RD17) promoted macrophage proliferation and migration by activating MAPK and suppressed inflammation by inhibiting NF-κB. In keratinocytes, OA-RD17 inhibited excessive inflammation, and activated MAPK via the Toll-like receptor 4 (TLR4) to promote proliferation and migration, as well as up-regulate the expression of miR-632, which targeted GSK3β to activate Wnt/β-catenin to boost proliferation and migration in a positive feedback manner. Notably, OA-RD17 promoted transition from the inflammatory to proliferative stage, accelerated epidermal and granulation regeneration, and exhibited therapeutic effects on mouse and diabetic patient ex vivo skin wounds. MiR-632 activated Wnt/β-catenin to promote full-thickness skin wound healing in rats.OA-RD17 exhibited promising therapeutic effects on mice (full-thickness, deep second-degree burns), and ex vivo skin wounds in diabetic patients by regulating macrophages proliferation, migration, and polarization (MAPK, NF-κB), and keratinocytes proliferation and migration (TLR4/MAPK/miR-632/Wnt/β-catenin molecular axis). Moreover, miR-632 also activated Wnt/β-catenin to promote full-thickness skin wound healing in rats. Notably, our results indicate that OA-RD17 and miR-632 are promising pro-healing drug candidates.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 生物学
小类 | 2 区 生化与分子生物学 2 区 细胞生物学
JCR分区:
出版当年[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 CELL BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [3]Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56916 今日访问量:0 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)