高级检索
当前位置: 首页 > 详情页

Evaluation of biomechanical properties and biocompatibility: are partially absorbable cords eligible for anterior cruciate ligament reconstruction?

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Kunming, Yunnan, Peoples R China [2]First Peoples Hosp Yunnan Prov, Dept Pain Management, Kunming, Yunnan, Peoples R China [3]Kunming Med Univ, Dept Sports Med, Affiliated Hosp 1, Kunming, Yunnan, Peoples R China
出处:
ISSN:

关键词: ACL reconstruction augmentation technique reinforcing cord polydioxanone ultra-high molecular weight polyethylene

摘要:
Introduction: Independent augmentation technology based on reinforcing devices has been reported to signifi-cantly reduce the elongation behavior of graft and improve knee stability after anterior cruciate ligament reconstruction (ACLR). Using biodegradable devices could reduce the risk of severe inflammatory reactions due to particle accumulation from foreign bodies. Given the limitations of the mechanical properties of biodegradable materials, partially biodegradable composite devices may offer a compromise strategy.Methods: Three types of partially absorbable core-sheath sutures, including low-absorbable cord (LA-C), medium-absorbable cord (MA-C) and high-absorbable cord (HA-C), were braided using unabsorbable ultra-high molecular weight polyethylene (UHMWPE) yarn and absorbable polydioxanone (PDO) monofil-ament bundle based on the desired configuration. The feasibility of these partially absorbable cords were verified by biomechanical testing, material degradation testing, and cell experiments, all performed in vitro.Results: Reinforcement of an 8 mm graft with the cords decreased dynamic elongation by 24%-76%, was positively related to dynamic stiffness, and increased the failure load by 44%-105%, during which LA-C showed maximum enhancement. Human ligament-derived fibroblasts showed good proliferation and vitality on each cord over 2 weeks and aligned themselves in the direction of the fibers, especially the UHMWPE portion.Discussion: This study supports the potential of partially degradable UHMWPE/PDO cords, particularly LA-C, for graft protection. Nervertheless, a higher proportion of biodegradable material results in lower stiffness, which may impair the protective and lead to mechanical instability during degradation.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 3 区 工程技术
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Kunming, Yunnan, Peoples R China [2]First Peoples Hosp Yunnan Prov, Dept Pain Management, Kunming, Yunnan, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Kunming Med Univ, Kunming, Yunnan, Peoples R China [3]Kunming Med Univ, Dept Sports Med, Affiliated Hosp 1, Kunming, Yunnan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)