高级检索
当前位置: 首页 > 详情页

Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Mech & Elect Engn, 727 Jingming South Rd, Kunming 650500, Yunnan, Peoples R China [2]Kunming Med Univ, Affiliated Hosp 1, Dept Urol 1, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China
出处:
ISSN:

关键词: Low-dose computed tomography Super-resolution reconstruction Generating adversarial networks Image degradation

摘要:
The popularization and widespread use of computed tomography (CT) in the field of medicine evocated public attention to the potential radiation exposure endured by patients. Reducing the radiation dose may lead to scattering noise and low resolution, which can adversely affect the radiologists' judgment. Hence, this paper introduces a new network called PANet-UP-ESRGAN (PAUP-ESRGAN), specifically designed to obtain low-dose CT (LDCT) images with high peak signal-to-noise ratio (PSNR) and high resolution (HR). The model was trained on synthetic medical image data based on a Generative Adversarial Network (GAN). A degradation modeling process was introduced to accurately represent realistic degradation complexities. To reconstruct image edge textures, a pyramidal attention model call PANet was added before the middle of the multiple residual dense blocks (MRDB) in the generator to focus on high-frequency image information. The U-Net discriminator with spectral normalization was also designed to improve its efficiency and stabilize the training dynamics. The proposed PAUP-ESRGAN model was evaluated on the abdomen and lung image datasets, which demonstrated a significant improvement in terms of robustness of model and LDCT image detail reconstruction, compared to the latest real-esrgan network. Results showed that the mean PSNR increated by 19.1%, 25.05%, and 21.25%, the mean SSIM increated by 0.4%, 0.4%, and 0.4%, and the mean NRMSE decreated by 0.25%, 0.25%, and 0.35% at 2x, 4x, and 8x super-resolution scales, respectively. Experimental results demonstrate that our method outperforms the state-of-the-art super-resolution methods on restoring CT images with respect to peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and normalized root-mean-square error (NRMSE) indices.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q3 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Mech & Elect Engn, 727 Jingming South Rd, Kunming 650500, Yunnan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:57189 今日访问量:0 总访问量:1788 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)