高级检索
当前位置: 首页 > 详情页

Geomagnetic activity affects animal myocardial ischemia/reperfusion injury: an experimental-simulated study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Affiliated Hosp 1, Clin Pharm Ctr, Kunming 650032, Peoples R China [2]Chinese Acad Sci, Yunnan Observ, Kunming 650216, Peoples R China
出处:
ISSN:

关键词: Inflammatory factors Cardiovascular disease Cardiac function

摘要:
Numerous studies have shown that geomagnetic activity (GMA) contributes to the development and escalation of cardiovascular disease (CVD), as well as increased morbidity and mortality. However, the underlying molecular mechanisms and approaches for understanding GMA remain unclear. This study aimed to investigate the impact of GMA on oxidative stress and inflammatory responses. Myocardial ischemia/reperfusion injury (MI/RI) rat models were created under various geomagnetic field conditions. The range of cardiac function, markers of myocardial injury, inflammatory factors, and the TLR4/NF-kappa B signaling pathway were measured after the 24-h period. The findings showed that weak GMA significantly improved cardiac function in the MI/RI rat model and reduced the size of myocardial infarction and creatine kinase (CK) and lactic dehydrogenase (LDH) levels. Additionally, weak GMA enhanced superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content. Furthermore, weak GMA significantly reduced the levels of the myocardial inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Conversely, the effects observed under severe GMA conditions were opposite to those observed under weak GMA. Western blot and qPCR analysis demonstrated that weak GMA led to a significant downregulation of TLR4, TRAF6, NF-kappa B, TNF-alpha, and MCP-1 in the MI/RI rat models. In contrast to weak GMA, severe GMA increased TLR4, TRAF6, NF-kappa B, and TNF-alpha expression. This study suggested that weak GMA had a limiting effect on MI/RI rat models, whereas severe GMA exacerbated injury in MI/RI rats. These effects were associated with oxidative stress and inflammatory responses and might potentially involve the TLR4/NF-kappa B signaling pathway.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 3 区 地球科学
小类 | 3 区 生物物理 3 区 环境科学 3 区 气象与大气科学 3 区 生理学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q2 BIOPHYSICS Q2 ENVIRONMENTAL SCIENCES Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Q2 PHYSIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Affiliated Hosp 1, Clin Pharm Ctr, Kunming 650032, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)