高级检索
当前位置: 首页 > 详情页

Exosomes Derived from hucMSCs Primed with IFN-γ Suppress the NF-κB Signal Pathway in LPS-Induced ALI by Modulating the miR-199b-5p/AFTPH Axis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Medical University, Kunming, Yunnan, China [2]Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China [3]Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China [4]Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
出处:
ISSN:

关键词: Acute lung injury Human umbilical cord mesenchymal stem cells Exosomes Interferon-gamma miR-199b-5p AFTPH

摘要:
Exosomes (exos) are primarily responsible for the process of mesenchymal stem cells (MSCs) treatment for acute lung injury (ALI), but the mechanism remains unclear, particularly in altered microenvironment. Therefore, this study aimed to investigate the potential mechanism of exos derived from human umbilical cord mesenchymal stem cells (hucMSCs) primed with interferon-gamma (IFN-γ) on ALI and to propose a promising and cell-free strategy. This study extracted exos from hucMSCs supernatant primed and unprimed with IFN-γ marked with IFN-γ-exos and CON-exos, which were identified and traced. IFN-γ-exos administration to ALI models suppressed the NF-κB signaling pathway compared to CON-exos, which were quantified through western blot and immunohistochemical staining. Reverse transcription-quantitative polymerase chain reaction validated miR-199b-5p expression in the IFN-γ-exos and CON-exos treatment groups. Data analysis, a dual-luciferase reporter assay, and cell transfection were conducted to investigate the target binding between miR-199b-5p and Aftiphilin (AFTPH), with AFTPH expression analyzed via cell immunofluorescence and western blot. Co-immunoprecipitation was conducted for the interaction between AFTPH and NF-κB p65. The result revealed that miR-199b-5p was down-regulated in the IFN-γ-exos treatment group, which had a target binding site with AFTPH, and an interaction with NF-κB p65. Consequently, IFN-γ-exos inhibited the NF-κB signaling pathway in ALI in vitro and in vivo through the miR-199b-5p/AFTPH axis. Our results demonstrated new directions of novel and targeted treatment for ALI.© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学 4 区 生物物理 4 区 细胞生物学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q3 BIOPHYSICS Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Q4 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Medical University, Kunming, Yunnan, China [2]Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)