高级检索
当前位置: 首页 > 详情页

Cross-Domain Identification of Multisite Major Depressive Disorder Using End-to-End Brain Dynamic Attention Network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China [2]Kunming Univ Sci & Technol, Brain Cognit & Brain Comp Intelligence Integrat Gr, Kunming 650500, Peoples R China [3]Chinese Peoples Armed Police Force Engn Univ, Sch Informat Engn, Xian 710086, Peoples R China [4]Kunming Med Univ, Affiliated Hosp 1, Dept Psychiat, Kunming 650032, Peoples R China [5]Shanghai Normal Univ, Coll Educ, Dept Psychol, Shanghai 200234, Peoples R China
出处:
ISSN:

关键词: Major depressive disorder brain dynamic attention network clinical heterogeneity multisite data shift

摘要:
Establishing objective and quantitative imaging markers at individual level can assist in accurate diagnosis of Major Depressive Disorder (MDD). However, the clinical heterogeneity of MDD and the shift to multisite data decreased identification accuracy. To address these issues, the Brain Dynamic Attention Network (BDANet) is innovatively proposed, and analyzed bimodal scans from 2055 participants of the Rest-meta-MDD consortium. The end-to-end BDANet contains two crucial components. The Dynamic BrainGraph Generator dynamically focuses and represents topological relationships between Regions of Interest, overcoming limitations of static methods. The Ensemble Classifier is constructed to obfuscate domain sources to achieve inter-domain alignment. Finally, BDANet dynamically generates sample-specific brain graphs by downstream recognition tasks. The proposed BDANet achieved an accuracy of 81.6%. The regions with high attribution for classification were mainly located in the insula, cingulate cortex and auditory cortex. The level of brain connectivity in p24 region was negatively correlated (p < 0.05) with the severity of MDD. Additionally, sex differences in connectivity strength were observed in specific brain regions and functional subnetworks (p < 0.05 or p < 0.01). These findings based on a large multisite dataset support the conclusion that BDANet can better solve the problem of the clinical heterogeneity of MDD and the shift of multisite data. It also illustrates the potential utility of BDANet for personalized accurate identification, treatment and intervention of MDD.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China [2]Kunming Univ Sci & Technol, Brain Cognit & Brain Comp Intelligence Integrat Gr, Kunming 650500, Peoples R China
通讯作者:
通讯机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China [2]Kunming Univ Sci & Technol, Brain Cognit & Brain Comp Intelligence Integrat Gr, Kunming 650500, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53760 今日访问量:1 总访问量:1666 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)