高级检索
当前位置: 首页 > 详情页

GnT-V-mediated aberrant N-glycosylation of TIMP-1 promotes diabetic retinopathy progression

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming 650032, Yunnan, China [2]Ophthalmology Department, The Second Hospital of Ningbo, Ningbo 315010, Zhejiang, China
出处:
ISSN:

关键词: N-glycosylation Diabetic retinopathy N-acetylglucosaminyltransferase V Tissue inhibitor of metalloproteinase 1 Vascular endothelial growth factor

摘要:
Vascular endothelial growth factor (VEGF) signaling pathway plays an important role in the progression of diabetic retinopathy (DR). The glycosylation modification process of many key functional proteins in DR patients is abnormal. However, the potential involvement of abnormal N-glycoproteins in DR progression remains unclear.Glycoproteomic profiling of the vitreous humor was performed. The level of protein and N-glycoprotein was confirmed by Western blot and Lectin blot, respectively. The cell viability and migration efficiency were detected by CCK-8 and Transwell assay. Flow cytometry was conducted to analyze the level of cell apoptosis and reactive oxygen specie. Malondialdehyde, superoxide dismutase activity and VEGF content were detected by Enzyme linked immunosorbent assays. The interaction of metalloproteinase 1 (TIMP-1) with N-acetylglucosamine transferase V (GnT-V) was detected by GST pull-down. Hematoxylin and eosin staining and choroidal and retinal flat mount stained with fluorescein isothiocyanate-Dextran assay were used for functional research in vivo.We found that N-glycosylation was up-regulated in DR rats and high glucose (HG)-induced human retinal pigment epithelium cell line ARPE-19. HG-induced inhibited the viability of ARPE-19 cells and promoted cell apoptosis and oxidative stress (OS), but these effects were reversed with kifunensine treatment, GnT-V knockdown and TIMP-1 mutation. Additionally, GnT-V binds to TIMP-1 to promote N-glycosylation of TIMP-1. Over-expression of GnT-V inhibited the viability of ARPE-19 cells and promoted cell apoptosis, OS and VEGF release, which these effects were reversed with TIMP-1 mutation. Interestingly, over-expression of GnT-V promoted retinal microvascular endothelial cells (RMECs) angiogenesis but was revered with TIMP-1 mutation, which was terminally boosted by VEGF-A treatment. Finally, knockdown of GnT-V relieved DR progression.The findings indicate that GnT-V can promote RMECs angiogenesis and ARPE-19 cells injury through activation VEGF signaling pathway by increasing TIMP-1 N-glycosylation level, which provides a new theoretical basis for the prevention of DR.© 2024. The Author(s).

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming 650032, Yunnan, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)