高级检索
当前位置: 首页 > 详情页

Piceatannol Protects Sperm from Cryopreservation Damage by Modulating the Keap1-Nrf2/ARE Signaling Pathway

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Dept Urol Surg 2, Affiliated Hosp 1, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China
出处:
ISSN:

关键词: Piceatannol Sperm cryopreservation Sperm motility Oxidative damage ROS Keap1 Nrf2

摘要:
The purpose of this study was to explore the mechanism of action of Piceatannol (PIC) in attenuating oxidative damage to sperm during cryopreservation. Semen samples were collected and homogenized into six equal parts for freeze-thawing experiments. Four different concentrations of PIC were utilized as cryoprotectants during the freeze-thawing process, maintaing a semen to PIC ratio of 1:1, while sperm motility after freezing and thawing was analyzed using computer-assisted sperm analysis (CASA). Sperm plasma membrane integrity was assessed via the hypo-osmotic swelling (HOS) test. The levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities, long with the ability to scavenge sperm malondialdehyde (MDA), were examined in sperm following the addition of PIC. Quantitative real-time PCR (qRT-PCR) was performed to detect the expression levels of Keap1, Nrf2, GCLC, GCLM, and HMOX1 in sperm. The mechanism by which PIC protects sperm during cryopreservation from oxidative stress damage was further verified. Treatment with PIC at a dose of 5.0 mu mol/L significantly improved both sperm motility and viability while effectively reducing ROS levels in frozen sperm. Additionally, the integrity of the sperm plasma membrane was significantly enhanced. Furthermore, the expression level of Keap1 was significantly reduced, whereas the expression levels of GCLC, GCLM, HMOX1, and Nrf2 were significantly increased (p < 0.05) after the addition of PIC. Notably, a significant attenuation of sperm motility and viability was observed in this treatment group when PIC treatment was accompanied by the addition of an Nrf2 inhibitor, resulting in a significant elevation of ROS levels. The finding that PIC modulates ROS in frozen sperm via the Keap1-Nrf2/ARE pathway thereby enhancing sperm viability levels after freezing and thawing provides a novel approach to optimize semen cryopreservation.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 妇产科学 4 区 生殖生物学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q2 OBSTETRICS & GYNECOLOGY Q2 REPRODUCTIVE BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Dept Urol Surg 2, Affiliated Hosp 1, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)