高级检索
当前位置: 首页 > 详情页

A series of molecular modeling techniques to reveal selective mechanisms of inhibitors to beta-Site amyloid precursor protein cleaving enzyme 1 (BACE1) and beta-site amyloid precursor protein cleaving enzyme 2 (BACE2)

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Dept Neurosurg, Affiliated Hosp 1, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China [2]Kunming Med Univ, Haiyuan Coll, Kunming, Yunnan, Peoples R China
出处:
ISSN:

关键词: BACE1 BACE2 small-molecule inhibitors selective mechanisms molecular modeling

摘要:
Inhibition of beta-Site amyloid precursor protein cleaving enzyme 1 (BACE1) has been shown to be an effective treatment for Alzheimer's disease. A wealth of research has focused on finding highly selective small-molecule inhibitors targeting the BACE1 over its close homologue BACE2 to avoid potential side effects. However, given the highly structural similarities of BACE1 and BACE2, designing highly selective BACE1 inhibitors remains a huge challenge. Recently, it has been reported that a potential BACE1 inhibitor named C28 (similar to 52-fold selectivity) exhibited greater selectivity to BACE1 over BACE2 than the previously reported inhibitors AZD3293 and AZD3839 (similar to 1.5-fold and 14-fold selectivity). However, few computational studies have been performed to reveal its underlying mechanisms. In this study, a series of molecular modeling techniques were performed to reveal the selective mechanisms. Classical molecular dynamics (cMD) simulations indicated that the major variations appeared to be controlled by overall protein dynamics. Free energy calculations further suggested that the binding affinities of AZD3293 to BACE1 and BACE2 are similar, but the binding affinity of AZD3839 and C28 to BACE1 is much higher than to BACE2, and that the major variations are electrostatic interactions. The protein dynamics and energy differences were further observed in accelerated molecular dynamics (aMD) simulations. In addition, the umbrella sampling simulations revealed the inhibitors' different patterns of dissociation from the binding pockets of BACE1 and BACE2, and that different energy barriers were responsible for the selectivity. The physical principles revealed by this study may facilitate the rational design of more potent BACE1 selective inhibitors. Communicated by Ramaswamy H. Sarma

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 生物学
小类 | 3 区 生物物理 4 区 生化与分子生物学
最新[2023]版:
大类 | 3 区 生物学
小类 | 3 区 生物物理 4 区 生化与分子生物学
JCR分区:
出版当年[2021]版:
Q1 BIOPHYSICS Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q2 BIOPHYSICS Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Dept Neurosurg, Affiliated Hosp 1, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China
通讯作者:
通讯机构: [1]Kunming Med Univ, Dept Neurosurg, Affiliated Hosp 1, 295 Xichang Rd, Kunming 650032, Yunnan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)