高级检索
当前位置: 首页 > 详情页

Research on the changes in balance motion behavior and learning, as well as memory abilities of rats with multiple cerebral concussion-induced chronic traumatic encephalopathy and the underlying mechanism

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]College of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500 [2]Department of Medical Imaging, The First Affiliated Hospital ofKunming Medical University, Kunming, Yunnan 650032, P.R. China [3]Department of Neurosurgery, The First Affiliated Hospital ofKunming Medical University, Kunming, Yunnan 650032, P.R. China
出处:
ISSN:

关键词: multiple cerebral concussion balance motion learning and memory

摘要:
To study the effects of multiple cerebral concussion (MCC)-induced chronic traumatic encephalopathy on balance motion behavior learning and memory abilities of rats and its possible mechanism. 4MCC rat models were established by means of striking the head (4MCC group, n=15), while normal Sprague-Dawley (SD) rats were used as controls (C group, n=15). At 2 weeks after injury, balance beam (BB) test, beam walking (BW) test and Morris water maze (MWM) test were performed, respectively. The metabolites in brain tissues of rats, the number of glial fibrillary acidic protein (GFAP)-positive cells and apoptotic cells in brain slices of rats, and the expression levels of phosphorylated tau (p-tau) and A(1-40) proteins were detected. The score of rats in 4MCC group was significantly lower than that in C group (p<0.01). The escape latencies of rats in 4MCC group on the 4th-7th days during training and the time reaching the platform were significantly longer (p<0.05), but the residence time in the target quadrant was obviously shorter (p<0.01). Naphthalene acetic acid (NAA) and creatinine (Cr) values in septal coronal section in 4MCC group were significantly lower, but choline (Cho) and myo-inositol (MI) values were obviously higher (p<0.01). The number of GFAP-positive cells in the hippocampal and septal areas in 4MCC group were significantly larger (p<0.01). In the hippocampal and septal areas of 4MCC group, the number of apoptotic cells was obviously larger (p<0.01), and the expression levels of p-tau and A(1-40) proteins were significantly higher (p<0.01). Thus, MCC-induced chronic traumatic encephalopathy can increase the expressions of p-tau and A(1-40) proteins in the hippocampal and septal areas, leading to damage of hippocampal and septal neurons and increasing the number of astrocytes in the hippocampal and septal areas, ultimately damaging the balance motion behavior and learning, as well as memory abilities of rats.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
JCR分区:
出版当年[2018]版:
Q4 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]College of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500
通讯作者:
通讯机构: [*1]College of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56918 今日访问量:0 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)