高级检索
当前位置: 首页 > 详情页

Effect of Insulin-Regulated FOXC2 Expression in Adipocyte Differentiation and Insulin Resistance.

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China. [2]Department of Clinical Laboratory, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China. [3]Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.
出处:
ISSN:

关键词: Adipocyte differentiation Expression regulation FOXC2 Insulin resistance

摘要:
1) To investigate the effect of FOXC2 on the differentiation of adipose-derived mesenchymal stem cells. 2) To analyze the mechanism between FOXC2 expression regulation in adipose differentiation and insulin resistance (IR). We first amplified the FOXC2 promoter region-512 and cloned it into the luciferase expression vector. The reporter gene system was transfected into the adipose tissue-derived mesenchymal stem cell to study insulin-mediated FOXC2 expression. We also manipulated FOXC2 protein expression by either siRNA or overexpression and studied the differentiation capability of adipose tissue-derived mesenchymal stem cell into adipocytes, as well as the influence on several IR-related genes: GLUT4, PPARγ, UCP1 and PAI-1. 1) Insulin effectively induced the expression of FOXC2 protein in adipose tissue-derived mesenchymal stem cells under differentiation (P<0.01). Insulin also induced FOXC2-pro-512T promoter activity significantly (P<0.01). 2) The stem cell adipose differentiation decreased in the FOXC2 overexpression group. 3) When FOXC2 was overexpressed, the expression of GLUT4, PAI-1 and UCP1 was higher than control groups (p<0.001). When FOXC2 was down-regulated by siRNA, both GLUT4 and PAI-1's protein expression were decreased (p<0.001), and the protein expression of PPARγ was increased (p<0.001). In the presence of insulin induction, overexpression of FOXC2 led to significantly higher UCP-1 expression (p<0.001) and lower PAI-1 expression (p<0.001). The protein expression of GLUT4, PAI-1 (p<0.001) and UCP-1 (p<0.05) was decreased in cells transfected with FOXC2 siRNA. Insulin effectively induced the expression of FOXC2 protein in adipose tissue-derived mesenchymal stem cells under differentiation, possibly through the regulation of the FOXC2-pro-512T promoter activity. The different protein expression of FOXC2 has regulatory effects on several genes related to insulin resistance. FOXC2 is an important regulatory factor in adipocyte differentiation and insulin resistance. © 2020 Zhang et al.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 4 区 内分泌学与代谢
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 内分泌学与代谢
JCR分区:
出版当年[2020]版:
Q3 ENDOCRINOLOGY & METABOLISM
最新[2023]版:
Q3 ENDOCRINOLOGY & METABOLISM

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.
通讯作者:
通讯机构: [1]Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)