高级检索
当前位置: 首页 > 详情页

Agomelatine prevents macrophage infiltration and brain endothelial cell damage in a stroke mouse model.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
出处:
ISSN:

关键词: stroke ischemic/reperfusions macrophage agomelatine endothelial cells

摘要:
Ischemic/reperfusions are regarded as the clinical consensus for stroke treatment, which results in secondary injury of brain tissues. Increased blood-brain barrier (BBB) permeability and infiltration of inflammatory cells are responsible for the ischemic/reperfusion injury. In the present study, we aimed to investigate the effects of Agomelatine on brain ischemic/reperfusions injury and the underlying mechanism. MCAO model was established in mice. The expressions of CD68 and claudin-5 in the cerebral cortex were determined using an immunofluorescence assay. Brain permeability was evaluated using Evans blue staining assay. A two-chamber and two-cell trans-well assay was used to detect the migration ability of macrophages through endothelial cells. The expression levels of claudin-5 and MCP-1 in the endothelial cells were determined using qRT-PCR and ELISA. CD68 was found to be up-regulated in the cerebral cortex of MCAO mice but was down-regulated by treatment with Agomelatine. The expression level of down-regulated claudin-5 in the cerebral cortex of MCAO mice was significantly suppressed by Agomelatine. Deeper staining of Evans blue was found in the MCAO group, which was however faded significantly in the Agomelatine treated MCAO mice. The migrated macrophages were significantly increased by hypoxia incubation but were greatly suppressed by the introduction of Agomelatine. The down-regulated claudin-5 by hypoxic incubation in endothelial cells was up-regulated by treatment with Agomelatine. Furthermore, the increased expression of MCP-1 in endothelial cells under hypoxic conditions was significantly inhibited by Agomelatine. Agomelatine prevents macrophage infiltration and brain endothelial cell damage in a stroke mouse model.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 3 区 老年医学 3 区 细胞生物学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 老年医学
JCR分区:
出版当年[2021]版:
Q2 CELL BIOLOGY Q2 GERIATRICS & GERONTOLOGY
最新[2023]版:
Q2 CELL BIOLOGY Q2 GERIATRICS & GERONTOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)