高级检索
当前位置: 首页 > 详情页

Coculture of Vascular Endothelial Cells and Adipose-Derived Stem Cells as a Source for Bone Engineering

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
出处:
ISSN:

关键词: bone engineering coculture system seed cell osteogenic differentiation

摘要:
The interaction between vascular endothelial cells (VECs) and osteoblasts (OBs) is the focus of this recent research. Vascular endothelial cells secrete bone morphogenetic protein, which promotes OB differentiation and stimulates OBs and their precursor cells to secrete vascular endothelial growth factor. Vascular endothelial growth factor is important in angiogenesis and angiopoiesis. Cloning studies have shown that adipose-derived stem cells (ADSCs) have the potential to differentiate into fat, bone, cartilage, and skeletal and smooth muscle cells, among others. Adipose-derived stem cells can express multiple growth factors, including vascular endothelial growth factor and hepatocyte growth factor. Our study examined the influence of coculturing VECs and ADSCs on osteogenic differentiation. Cord blood-derived VECs and ADSCs were isolated from rats and characterized with immunofluorescence staining and morphological observation. Coculture of third-generation ADSCs and VECs was induced for 6 weeks. Cell growth was analyzed using a modified MTT assay. Alkaline phosphatase (ALP) and osteocalcin (OC) was analyzed using immunofluorescence staining. When ADSCs and VECs were cocultured, the absorbance of cells gradually increased, reaching a peak on day 12. The highest absorbance was seen in a coculture system with a ratio of ADSCs and VECs of 1:1. The secretion of ALP and OC gradually increased in these cells and was significantly higher than controls (P < 0.01). Coculturing of ADSCs and VECs at a 1: 1 ratio gave the highest secretion of ALP and OC at every time point, and was significantly higher than other groups (P < 0.01). Our results indicated that ADSCs can be induced to osteogenic differentiation by VECs in vitro, suggesting a coculture system of VECs and ADSC as a novel source of cells for bone engineering.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 4 区 医学
小类 | 4 区 外科
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 外科
JCR分区:
出版当年[2012]版:
Q3 SURGERY
最新[2023]版:
Q3 SURGERY

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者机构: [1]Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
通讯作者:
通讯机构: [*1]Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:57189 今日访问量:0 总访问量:1788 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)