高级检索
当前位置: 首页 > 详情页

基于改进YOLOv3和迁移学习的轻量型补片目标检测

Lightweight mesh target detection based on improved YOLOv3 and transfer learning

文献详情

资源类型:

收录情况: ◇ 统计源期刊 ◇ 北大核心 ◇ CSCD-C

机构: [1]云南大学信息学院 [2]昆明医科大学第一附属医院胃肠与疝外科 [3]昆明医科大学第一附属医院科教部
出处:
ISSN:

关键词: 三维超声图像 轻量型补片 目标检测 YOLOv3 迁移学习

摘要:
自动三维乳腺超声(Automated 3-D Breast Ultrasound,ABUS)克服传统超声的缺陷,成功应用于对腹壁疝轻量型补片的检查.但人工检阅ABUS超声图像耗时费力,且极易出现漏诊等问题.因此,文章提出一种基于改进YOLOv3和迁移学习的目标检测算法以辅助医生提高审阅速度和准确性.基于原有的YOLOv3模型,在检测层前增加空间金字塔池化(Spatial Pyramid Pooling,SPP)模块实现局部特征与全局特征的融合,丰富特征图的表达,解决了检测图像中小目标难以检测的问题;在网络训练中,采用迁移学习的策略进行训练网络以克服轻量型补片图像数据集有限的问题,提升网络的鲁棒性减少过拟合产生.实验结果表明,YOLOv3-SPP算法结合迁移学习训练方式,其平均精度均值(mean Average Precision,mAP)达到90.15%,图像检测速度为33.2 f·s-1,可有效辅助医生提高审阅效率.

基金:
语种:
第一作者:
第一作者机构: [1]云南大学信息学院
通讯作者:
推荐引用方式(GB/T 7714):

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)