高级检索
当前位置: 首页 > 详情页

Signal Transducer and Activator of Transcription 4-Induced Up-Regulated LINC01278 Enhances Proliferation and Invasion of Non-Small Cell Lung Cancer Cells via the MicroRNA-877-5p/Activating Transcription Factor 4 Axis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, KunMing City 650032, YunNan Province, China [2]First Department of Pumonary and Critical Care Medicline, Yan’an Affiliated Hospital of Kunming Medical University, KunMing City 650051, YunNan Province, China [3]Department of Thoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, 245 East Renmin Road, Panlong District, KunMing City 650051, YunNan Province, China
出处:
ISSN:

关键词: Non-small cell lung cancer LINC01278 MicroRNA-877-5p Activating transcription factor 4

摘要:
The purpose of this study was to investigate the specific effects of signal transducer and activator of transcription 4 (STAT4)-induced long intergenic nonprotein coding RNA 1278 (LINC01278) on the growth of non-small cell lung cancer (NSCLC) cells involved in the microRNA (miR)-877-5p/activated transcription factor 4 (ATF4) axis.NSCLC tumor tissue and adjacent normal tissue were collected. Human normal lung epithelial cell BEAS-2B and human NSCLC cell lines (H1299, H1975, A549, H2228) were collected. The expression levels of STAT4, LINC01278, miR-877-5p, and ATF4 were detected. A549 cells were screened for subsequent experiments. The proliferation ability of cells was detected by colony formation experiment. Cell apoptosis was tested by flow cytometry. Scratch test and transwell assay were used to detect the migration and invasion ability of cells. Biological function of LINC01278 in NSCLC was confirmed by xenograft experiments.Low expression miR-877-5p and high expression of STAT4, LINC01278 and ATF4 were detected in NSCLC. Silenced LINC01278 in A549 cell depressed cell proliferation, migration and invasion, but facilitated cell apoptosis. LINC01278 was positively correlated with STAT4 and could directly bind to miR-877-5p. Upregulating miR-877-5p suppressed NSCLC cell progression, while downregulating miR-877-5p had the opposite effect. Upregulating miR-877-5p abrogated the effects of silenced LINC01278 on NSCLC cell progression. MiR-877-5p targeted ATF4. ATF4 upregulation could partly restore the carcinogenic effect of LINC01278 in vitro and in vivo.Our data supports that STAT4-induced upregulation of LINC01278 promotes NSCLC progression by modulating the miR-877-5p/ATF4 axis, suggesting a novel direction for NSCLC treatment.© 2024. Korean Tissue Engineering and Regenerative Medicine Society.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 细胞与组织工程 4 区 工程:生物医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q2 CELL & TISSUE ENGINEERING Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, KunMing City 650032, YunNan Province, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)