高级检索
当前位置: 首页 > 详情页

High-glucose induces retinal pigment epithelium mitochondrial pathways of apoptosis and inhibits mitophagy by regulating ROS/PINK1/Parkin signal pathway

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [a]Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road, Kunming Yunnan, China [b]Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, Yunnan, China [c]Department of Ophthalmology, The First people's Hospital of Yunnan Province, Jinbi Road, Kunming, Yunnan, China
出处:
ISSN:

关键词: Diabetic retinopathy High-glucose Mitophagy Apoptosis RPE

摘要:
Diabetic retinopathy (DR) seriously endangers human beings' health, uncovering the underlying mechanism might help to cure DR. In this study, we found that the effects of glucose on retinal pigment epithelium (RPE) varies in a dose dependent manner, high-glucose (50mM) promotes reactive oxygen species (ROS) generation and cell apoptosis, inhibits cell mitophagy as well as proliferative abilities, while low-glucose (15mM) induces ROS production and cell mitophagy, but has little impacts on cell apoptosis and proliferation. Of note, the toxic effects of high-glucose (50mM) on RPE are alleviated by ROS scavengers and aggravated by autophagy inhibitor 3-methyladenine (3-MA) or mitophagy inhibitor cyclosporin A (CsA). High-glucose (50mM) induced ROS generation is merely eliminated by ROS scavengers instead of mitophagy or autophagy inhibitor. We also proved that high-glucose (50mM) inhibits cell proliferation and promotes cell apoptosis by regulating ROS mediated inhibition of mitophagy. In addition, mitophagy associated proteins PINK1 and Parkin are downregulated by high-glucose (50mM) or hydrogen peroxide treatments, which are reversed by ROS scavengers. Of note, Knockdown of PINK1 decreases phospharylated Parkin instead of total Parkin levels in RPE. Intriguingly, high-glucose's inhibiting effects on cell mitophagy as well as proliferation and its promoting effects on cell apoptosis are reversed by either PINK1 or Parkin overexpression. Therefore, we concluded that high-glucose promotes RPE apoptosis and inhibits cell proliferation as well as mitophagy by regulating ROS mediated inactivation of ROS/PINK1/Parkin signal pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 2 区 药学 3 区 医学:研究与实验
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 药学 2 区 医学:研究与实验
JCR分区:
出版当年[2019]版:
Q1 PHARMACOLOGY & PHARMACY Q1 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [a]Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road, Kunming Yunnan, China
共同第一作者:
通讯作者:
通讯机构: [*1]Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University,Dianmian Road 374, Kunming Yunnan, 650101 China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:57189 今日访问量:0 总访问量:1788 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)