高级检索
当前位置: 首页 > 详情页

Fenofibrate inhibits the expression of VEGFC and VEGFR-3 in retinal pigmental epithelial cells exposed to hypoxia

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Ophthalmology, The First Affiliated Hospitalof Kunming Medical University, Kunming, Yunnan 650031, P.R. China
出处:
ISSN:

关键词: human retinal pigment epithelial cells human umbilical vein endothelial cells hypoxia fenofibrate vascular endothelial growth factor C vascular endothelial growth factor receptor-3

摘要:
The aim of the present study was to examine the mechanisms through which fenofibrate inhibits the ability of human retinal pigment epithelial cells (RPE cells) exposed to hypoxia to stimulate the proliferation and migration of human umbilical vein endothelial cells (HUVECs). For this purpose, RPE cells and HUVECs were divided into the following groups: RPE-normoxia, RPE + fenofibrate, RPE-hypoxia, RPE hypoxia + fenofibrate; HUVECs normal culture and HUVECs + RPE-hypoxia culture supernatant. RPE cell hypoxia was induced by cobalt(II) chloride (CoCl2). A superoxide anion probe was used to measure the production of superoxide anion, which is indicative of hypoxic conditions. Cell proliferation was assessed by MTT assay, and the expression of vascular endothelial growth factor C (VEGFC) and vascular endothelial growth factor receptor-3 (VEGFR-3) in the RPE cell culture supernatant was measured by enzyme-linked immunosorbent assay (ELISA). The migration ability of the HUVECs was determined by scratch-wound assay, and the angiogenic ability of the HUVECs was examined by measuring cell lumen formation. The mRNA and protein expression levels of VEGFC and VEGFR-3. in the RPE cells were measured by RT-qPCR and western blot analysis, respectively. Our results revealed that fenofibrate inhibited the increase in the expression and release of VEGFC and VEGFR-3 into the RPE cell culture supernatant induced by exposure to hypoxia. The culture of HUVECs in medium supernatant of RPE cells epxosed to hypoxia enhanced the viability and migration ability of the HUVECs and promoted lumen formation; these effects were inhibited by fenofibrate. In conclusion, our data demonstrated that the exposure of RPE cells to hypoxia induced the expression and release of VEGFC and VEGFR-3 into the cell culture supernatant. The culture of HUVECs in conditioned medium from RPE cells exposed to hypoxia increased VEGFC and VEGFR-3 expression, and promoted the proliferation and migration of the HUVECs, as well as capillary tube formation, suggesting that RPE cells play an important role in the formation of choroidal neovascularization resulting from hypoxia. Fenofibrate inhibited the upregulation of VEGFC and VEGFR-3 in the RPE cells exposed to hypoxia, and thus reduced the ability of HUVECs to form new blood vessels.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
JCR分区:
出版当年[2015]版:
Q4 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Department of Ophthalmology, The First Affiliated Hospitalof Kunming Medical University, Kunming, Yunnan 650031, P.R. China
通讯作者:
通讯机构: [*1]Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, 295 XiChang Road, Kunming, Yunnan 650031, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)