高级检索
当前位置: 首页 > 详情页

A new peptide, VD11, promotes structural and functional recovery after spinal cord injury

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:梯队期刊

机构: [1]Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan Province, China [2]Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan Province, China [3]Department of Urology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China [4]Yunnan Province Clinical Research Center for Chronic Kidney Disease, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
出处:
ISSN:

关键词: Akt signaling pathway amphibian-derived bioactive peptide AMPK signaling pathway axonal regeneration brain-derived neurotrophic factor ischemia/reperfusion injury motor function nerve growth factor neuroprotective effect spinal cord injury

摘要:
The regenerative capacity of the central nervous system is very limited and few effective treatments are currently available for spinal cord injury. It is therefore a priority to develop new drugs that can promote structural and functional recovery after spinal cord injury. Previous studies have shown that peptides can promote substantial repair and regeneration of injured tissue. While amphibians have a pronounced ability to regenerate the spinal cord, few studies have investigated the effect of amphibian spinal cord-derived peptides on spinal cord injury. Here we report for the first time the successful identification and isolation of a new polypeptide, VD11 (amino acid sequence: VDELWPPWLPC), from the spinal cord of an endemic Chinese amphibian (Odorrana schmackeri). In vitro experiments showed that VD11 promoted the secretion of nerve growth factor and brain-derived neurotrophic factor in BV2 cells stimulated with lipopolysaccharide, as well as the proliferation and synaptic elongation of PC12 cells subjected to hypoxia. In vivo experiments showed that intravertebral injection of VD11 markedly promoted recovery of motor function in rats with spinal cord injury, alleviated pathological damage, and promoted axonal regeneration. Furthermore, RNA sequencing and western blotting showed that VD11 may affect spinal cord injury through activation of the AMPK and AKT signaling pathways. In summary, we discovered a novel amphibian-derived peptide that promotes structural and functional recovery after spinal cord injury.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 细胞生物学 3 区 神经科学
JCR分区:
出版当年[2023]版:
Q1 NEUROSCIENCES Q2 CELL BIOLOGY
最新[2023]版:
Q1 NEUROSCIENCES Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan Province, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56916 今日访问量:0 总访问量:1772 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)