高级检索
当前位置: 首页 > 详情页

UCFNNet: Ulcerative colitis evaluation based on fine-grained lesion learner and noise suppression gating

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Information, Yunnan University, Kunming 650504, China [2]Department of Gastroenterology, the First Affiliated Hospital of Kunming Medical University, Kunming, China [3]Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, United Kingdom
出处:
ISSN:

关键词: Ulcerative colitis evaluation Fine-grained lesion feature learner Noise suppression gating Deep learning

摘要:
Ulcerative colitis (UC) is a chronic disease characterized by recurrent symptoms and significant morbidity. The exact cause of the disease remains unknown. The selection of current treatment options for ulcerative colitis depends on the severity and location of the disease in each patient. Therefore, developing a fully automated endoscopic images for evaluating UC is crucial for guiding treatment plans and facilitating early prevention efforts.We propose a network called ulcerative colitis evaluation based on fine-grained lesion learner and noise suppression gating (UCFNNet). UCFNNet contains three novel modules. Firstly, a fine-grained lesion feature learner (FG-LF Learner) is proposed by integrating local features and a Softmax category prediction (SCP) module to improve the feature accuracy in small lesion areas. Subsequently, a graph convolutional feature combiner (GCFC) is developed to connect features across adjacent convolutional layers and to incorporate short connections between input and output, thereby mitigating feature loss during transmission. Thereafter, a noise suppression gating (NS gating) technique is designed by implementing a grid attention mechanism and a feature gating (FG) module to prioritize significant lesion features and suppress irrelevant and noisy regions in the input feature map.We evaluate the performance of the proposed network on both privately-collected and publicly-available datasets. The evaluation of UC achieves excellent results on privately-collected dataset, with an accuracy (ACC) of 89.57 %, Matthews correlation coefficient (MCC) of 85.52 %, precision of 89.26 %, recall of 89.48 %, and F1-score of 89.78 %. The results are also impressive on publicly-available dataset, with ACC of 85.47 %, MCC of 80.42 %, precision of 85.62 %, recall of 84.00 %, and F1-score of 84.53 %, surpassing the performance of state-of-the-art techniques.Our proposed model introduces three innovative algorithm modules, which outperform the current state-of-the-art methods and achieve high ACC and F1-score. This indicates that our method has superior performance compared to traditional machine learning and existing deep methods, which means that our method has good application prospects. Meanwhile, it has been verified that the proposed model demonstrates good interpretability. The source code is available at github.com/YinLeRenNB/UCFNNet.Copyright © 2024 Elsevier B.V. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 计算机:理论方法 2 区 工程:生物医学 2 区 医学:信息
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]School of Information, Yunnan University, Kunming 650504, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)