高级检索
当前位置: 首页 > 详情页

A novel fluorescent sensing platform for insulin detection based on competitive recognition of cationic pillar[6]arene

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [a]School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China [b]The First Affiliated Hospital of Kunming Medical University, Kunming 650032, PR China [c]Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, PR China
出处:
ISSN:

关键词: Cationic pillar[6]arene Insulin Reduced graphene oxide Host-guest recognition Fluorescence resonance energy transfer

摘要:
Competitive host-guest recognition has been utilized to determine small molecules using macrocyclic supra molecular host, while less studies focused on the specific recognition and sensing of protein. In the present work, we are the first time to report a label-free fluorescent assay for insulin determination based on the supramolecular recognition between cationic pillar[6]arene (CP6) and insulin. The approach is based on fluorescence resonance energy transfer (FRET) through competitive recognition between CP6 functionalized reduced graphene oxide (CP6@rGO) and probe/insulin molecules. Probe molecule (RhB) has strong fluorescent signal, and its fluorescent is quenched by rGO based on FRET. When target protein molecule (insulin) is added to CP6@rGO, the probe is displaced by insulin and a host-guest complex CP6@rGO/insulin is formed, resulting in a "turn-on" fluorescence signal. The fluorescence intensity of complex increased linearly with the increase of insulin concentration ranging 0.01-0.50 and 1.0-16.0 mu M, respectively with a detection limit of 3 nM. The sensor was successfully utilized to determine insulin in artificial serum. The molecular docking result showed that the N-terminal Phe of insulin's B chain was included in the CP6 cavity through electrostatic interaction and formed a stable host-guest complex.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 化学
小类 | 2 区 分析化学
最新[2023]版:
大类 | 1 区 化学
小类 | 1 区 分析化学
JCR分区:
出版当年[2019]版:
Q1 CHEMISTRY, ANALYTICAL
最新[2023]版:
Q1 CHEMISTRY, ANALYTICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [a]School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)