高级检索
当前位置: 首页 > 详情页

Long non-coding RNA SNHG5 sponges miR-26a to promote the tumorigenesis of osteosarcoma by targeting ROCK1

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Laboratory Medicine, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China [2]State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100085, China [3]Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnan Province, China1
出处:
ISSN:

关键词: LncRNA SNHG5 miR-26a ROCK1 Osteosarcoma

摘要:
Background: Osteosarcoma (OS) is one of the most common invasive malignancies of the bone. The long non-coding RNA (lncRNA) SNHG5 (small nucleolar RNA host gene 5) has been consistently shown to be involved in many cancers, although its precise function in osteosarcoma remains poorly understood. In this study, we investigated the role of SNHG5 in OS progression and the underlying mechanism. Methods: SNHG5 expression in 32 OS tissues and 4 OS cell lines was measured by quantitative real-time PCR (qRT-PCR). Migration, invasion, proliferation and cell cycle profiles were analyzed by established assays to determine the biological functions of SNHG5 and miR-26a in OS cells. The binding sites of miR-26a in SNHG5 and ROCK1 were predicted by the RNAhybrid 2.2 program. Luciferase reporter assay was then used to validate the direct targeting of SNHG5 with miR-26a and of Rho-associated coiled coil-containing protein kinase 1 (ROCK1) with miR-26a. The effect of SNHG5 on the ROCK signaling pathway was assessed by western blotting. Results: Elevated expression of SNHG5 was correlated with poor clinical outcome and prognosis in OS patients. SNHG5 functioned as a sponge for miR-26a and promoted proliferation, invasion and migration, and accelerated G1 to S phase transition in OS cells. SNHG5 functioned as a competing endogenous RNA (ceRNA) for miR-26a and activated the ROCK signaling pathway through the miR-26a-ROCK1 axis. Conclusion: SNHG5 acts as an oncogene in OS via the SNHG5-miR-26a-ROCK1 axis and is therefore a potential novel therapeutic target for OS treatment.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 医学:研究与实验 3 区 药学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 药学 2 区 医学:研究与实验
JCR分区:
出版当年[2018]版:
Q1 PHARMACOLOGY & PHARMACY Q2 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Department of Laboratory Medicine, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)