高级检索
当前位置: 首页 > 详情页

Transcriptome profiling unveils GAP43 regulates ABC transporters and EIF2 signaling in colorectal cancer cells(Open Access)

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China. [2]Department of Clinical Laboratory, Hangzhou Cancer Hospital, Hangzhou, 320000, Zhejiang, China. [3]The NHC Key Laboratory of Drug Addition Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China. [4]Department of Infectious and Medicine, Heilongjiang Provincial Hospital, Harbin 150036, China. [5]Department of Pediatrics, Data People’s hospital, Shenmu 719301, China.
出处:
ISSN:

关键词: Colorectal cancer DNA methylation GAP43 RNA-seq Transcriptome profiling

摘要:
Background: The growth- and plasticity-associated protein-43 (GAP43) is biasedly expressed in indigestive system and nervous system. Recent study has shown that GAP43 is responsible for the development of neuronal growth and axonal regeneration in normal nervous tissue, while serves as a specific biomarker of relapsed or refractory neuroblastoma. However, its expression pattern and function in digestive system cancer remains to be clarified. Methods: In this study, we examined the GAP43 status with qRT-PCR and bisulfite genomic sequencing in colorectal cancer (CRC). We investigated the effect of overexpressed GAP43 in CRC cells with RNA-seq. The RNA-seq data was analyzed with DAVID and IPA. Results: GAP43 was downregulated in CRC compared to the adjacent tissues. DNA methylase inhibitor 5-Aza-CdR treatment could significantly induce GAP43, indicated that the silencing of GAP43 gene in CRC is closely related to DNA methylation. Bisulfite genomic sequencing confirmed the promoter methylation of GAP43 in CRC. To explore the transcriptional alterations by overexpressed GAP43 in CRC, we performed RNA-seq and found that upregulated genes were significantly enriched in the signaling pathways of ABC transporters and ECM-receptor interaction, while downregulated genes were significantly enriched in Ribosome signaling pathway. Further Ingenuity Pathway Analysis (IPA) showed that EIF2 signaling pathway was significantly repressed by overexpression of GAP43. Conclusion: Our findings provide a novel mechanistic insight of GAP43 in CRC. Transcriptome profiling of overexpressed GAP43 in CRC uncovered the functional roles of GAP43 in the development of human CRC. © 2021, The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 3 区 肿瘤学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2021]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
共同第一作者:
通讯作者:
通讯机构: [1]School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China. [2]Department of Clinical Laboratory, Hangzhou Cancer Hospital, Hangzhou, 320000, Zhejiang, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53661 今日访问量:0 总访问量:1665 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)