高级检索
当前位置: 首页 > 详情页

Loss of SIL1 Affects Actin Dynamics and Leads to Abnormal Neural Migration

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Sch Basic Med, Dept Physiol, Kunming, Yunnan, Peoples R China [2]Kunming Med Univ, Affiliated Hosp 1, Dept Med Oncol, Kunming, Yunnan, Peoples R China
出处:
ISSN:

关键词: Sil1 Knockout Mice Brain Proteomic Neuronal migration Actin cytoskeleton dynamics

摘要:
SIL1 is a nucleotide exchange factor for the molecular chaperone protein Bip in the endoplasmic reticulum that plays a crucial role in protein folding. The Sil1 gene is currently the only known causative gene of Marinesco-Sj & ouml;gren syndrome (MSS). Intellectual developmental disability is the main symptom of MSS, and its mechanism has not been fully elucidated. Studies have shown that mutations in the Sil1 gene can delay neuronal migration during cortical development, but the underlying molecular mechanisms remain unclear. To further identify potential molecules involved in the regulation of central nervous system development by SIL1, we established a cortical neuron model with SIL1 protein deficiency and used proteomic analysis to screen for differentially expressed proteins after Sil1 silencing, followed by GO functional enrichment and protein-protein interaction (PPI) network analysis. We identified 68 upregulated and 137 downregulated proteins in total, and among them, 10 upregulated and 3 downregulated proteins were mainly related to actin cytoskeleton dynamics. We further validated the differential changes in actin-related molecules using qRT-PCR and Western blotting of a Sil1 gene knockout (Sil1-/-) mouse model. The results showed that the protein levels of ACTN1 and VIM decreased, while their mRNA levels increased as a compensatory response to protein deficiency. The mRNA and protein levels of IQGAP1 both showed a secondary increase. In conclusion, we identified ACTN1 and VIM as the key molecules regulated by SIL1 that are involved in neuronal migration during cortical development.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 神经科学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Sch Basic Med, Dept Physiol, Kunming, Yunnan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52537 今日访问量:0 总访问量:1562 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 昆明医科大学第一附属医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西昌路295号(650032)